Molecular simulation and structure prediction using CHARMM and the MMTSB Tool Set Coarse-grained Models

> Charles L. Brooks III MMTSB/CTBP 2006 Summer Workshop

Developing coarse-grained models in CHARMM

Case studies

- Cα-based Go models
 - Encode native interactions via $C\alpha$ - $C\alpha$ "contacts", coarsegrain to level of one "bead" per aa
 - Useful as complement to protein folding mechanism studies
 - Helpful in understanding/informing single molecule
 "pulling" studies
 - MMTSB server available to provide "flavored" Go models for such studies
 - http://mmtsb.scripps.edu/webservices/gomodel.html

Developing coarse-grained models in CHARMM

Case studies

- Coarse-grained DNA models for sequence and salt effects on DNA melting
 - General coarse-graining of DNA to 3 "beads" per nucleotide (base, sugar, phosphate)
 - Developed by J. de Pablo and coworkers (Chem. Eng., U. Wisc.)
 - Helpful in understanding/informing thermodynamics of DNA melting

- Native contact interactions encoded as
 - 1/0 (traditional Go model)
 - $\epsilon_{ii}/0$ (scaled by empirical energy scale flavored Go model)
 - All other pairs are repulsive
- Chain connectivity given by bonds, angles and dihedrals
 - Bonds and angle terms described by harmonic restoring forces centered at psuedo bond and pseudo angle separations from known structure
 - Torsions are treated either as
 - Simple cosine term centered at observed torsion (templated)
 - Information-based cosine series depending on pair of aa

- Relevant references for Go-type models
 - Conventional Go models
 - JE Shea, YD Nochomovitz, Z Guo and CL Brooks, III. Exploring the space of protein folding Hamiltonians: The balance of forces in a minimalist β-barrel model. J Chem Phys, 1998, 109, 2895-903
 - JE Shea, JN Onuchic and CL Brooks, III. Exploring the origins of topological frustration: design of a minimally frustrated model of fragment B of protein A. PNAS, 1999, 96, 12512-7
 - C Clementi, H Nymeyer, JN Onuchic. Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. *J Mol Biol*, 2000, 298, 937-53
 - N Koga and S Takada. Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. *J Mol Biol* 2001, 313, 171-80
 - MS Cheung, AE Garcia, and JN Onuchic. Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse. *PNAS*, 2002, 99, 685-90

- Relevant references for Go-type models
 - Flavored Go models
 - J Karanicolas and CL Brooks, III. The origins of asymmetry in the folding transition states of protein L and protein G. *Protein Sci*, 2002, 11, 2351-61
 - J Karanicolas and CL Brooks, III Improved Go-like Models Demonstrate the Robustness of Protein Folding Mechanisms Towards Non-native Interactions. *J Mol Biol*, 2003, 334, 309-25

Representing Go models in CHARMM

Specifying topology and parameters

Sequence/mass information

*	
20 1	
MASS 1 G1	101.000000
MASS 2 G2	71.000000
MASS 3 G3	114.000000
MASS 4 G4	114.000000
MASS 5 G5	128.000000
MASS 6 G6	147.000000
MASS 7 G7	114.000000
MASS 8 G8	128.000000
MASS 9 G9	128.000000
MASS 10 G10	128.000000
MASS 11 G11	128.000000
MASS 12 G12	114.000000
MASS 13 G13	71.000000

* Topology for Go model of 1bdc

read rtf card

MASS 57G5771.000000MASS 58G5897.000000MASS 59G59128.000000MASS 60G6071.000000

Residue information

DECL +CA

AUTOGENERATE ANGLES DIHEDRAL

RESI G1 0.0 GROU Atom CA G1 0.0 Bond CA +CA

MMTSB/CTBP Summer Workshop

© Charles L. Brooks III, 2006.

Representing Go models in CHARMM

Specifying topology and parameters Torsions

Bonds and angles

read * Par *	param ameter	card rs for G	o model of 1bdc
BON	D		
G1	G2	378.	000000 3.795046
G2	G3	378.	000000 3.808982
G3	G4	378.	000000 3.800045
G4	G5	378.	000000 3.791182
ANG	LE		
G1	G2	G3	75.600000 108.672972
G2	G3	G4	75.600000 112.756549
G3	G4	G5	75.600000 124.755262
G4	G5	G6	75.600000 110.565786

DIHEDRAL

G1	G2	G3	G4	0.382494 1 284.943180
G1	G2	G3	G4	1.026981 2 266.456266
G1	G2	G3	G4	0.017622 3 114.131745
G1	G2	G3	G4	0.195028 4 107.766228
G2	G3	G4	G5	0.434771 1 296.199841
G2	G3	G4	G5	0.524659 2 253.486984
G2	G3	G4	G5	0.108980 3 25.409709
G2	G3	G4	G5	0.056961 4 96.428204

NONBONDED NBXMOD 3 ATOM CDIEL SHIFT VATOM -VDISTANCE VSWITCH -CUTNB 399.0 CTOFNB 398.5 CTONNB 395.5 EPS 1.0 WMIN 1.5

- G1 0.0 -0.000132 4.037732
- G2 0.0 -0.000132 5.474578
- G3 0.0 -0.000132 6.595057

Non-specific non-bonded repulsion

Representing Go models in CHARMM

- Specifying topology and parameters
 - Residue pair specific (native contact) non-bonded parameters

NBFIX					
G1	G4	-0.043567	6.871368		
G1	G7	-0.043567	8.971603		
G2	G39	-0.047043	14.179823		
G2	G40	-0.046579	15.310104		
G3	G6	-0.080644	9.319967		
G3	G40	-0.037773	12.423546		

Can we understand different mechanisms of folding in similar topologies?

Similar heat capacities, cooperativity and folding free energy surfaces (versus q, fraction of native contacts)

Sequence specific Go-like models yield two-state like folding for both proteins

Segment B1 of peptostreptococcal protein L (LB1) and segment B1 of streptococcal protein G (GB1) have very similar topologies but different folding mechanisms

Karanicolas & Brooks, Prot. Sci., 2002

MMTSB/CTBP Summer Workshop

© Charles L. Brooks III, 2006.

Different sequences, analogous topology, yield different folding mechanism

Consistent with experimental findings

• For LB1 the N-terminal hairpin precedes folding of C-terminal hairpin

• In GB1 (as already seen from all-atom calculations) Cterminal hairpin forms earlier

Karanicolas & Brooks, Prot. Sci., 2002

MMTSB/CTBP Summer Workshop

Kinetics and mechanism of WW domains using Go-like models

- WW domains are simple β-sheet "proteins" that show a sequence dependent switch between 2-state and 3state folding kinetics
- What is the folding mechanism?
- What is the origin of the switch?

Karanicolas & Brooks, PNAS, 2003

Folding kinetics reproduce experimental observations

PIN WW domain shows 2-state kinetics 1.25 0.75 <Q(t)>0.50.25 ightarrowSingle residual 0 0 -1 Double residual -2 -1 -2 0 2 2 3 Time (t x 10⁵)

FBP WW domain follows **3-state kinetics**

- FBP shows loop 2 folding dominates folding kinetics
- Parallel pathways for formation of loop 1 and loop 2
- Registration of loop 2 is rate determining in FBP

Karanicolas & Brooks, PNAS, 2003

MMTSB/CTBP Summer Workshop

Free energy landscapes indicate presence of intermediate in FBP WW domain

- Free energy landscapes calculated with <u>detailed</u> <u>atomic models</u> show intermediate "shoulder" in FBP WW domain
- Presence of meta-stable state consistent with Go model kinetics

Karanicolas & Brooks, PNAS, 2004

MMTSB/CTBP Summer Workshop

Multi-phase folding is a hallmark of functional substates - folding and function cooperate

Coarse-grained DNA model

• J de Pablo and coworkers

- DNA reduced to three beads per nucleotide
- Bond, angle and torsion potentials as in MM force fields
- Non-nonded specific for specific base-stacking and pairing
- Electrostatics via screened coulomb law

$$U_{elec}(r) = \frac{e^{-\kappa r}}{\varepsilon r}$$

Coarse-grained DNA model

• J de Pablo and coworkers

Model reproduces salt-dependent DNA melting

Coarse-grained DNA model

• J de Pablo and coworkers

Model reproduces salt-dependent DNA melting

MMTSB/CTBP Summer Workshop

Coarse-grained model for virus assembly

Model 1: Triangular Capsomers, T=1₂₀

Model 2: Quadrilateral Units, T=1₆₀ © Charles L. Brooks III, 2006.

Probing viral assembly kinetics and thermodynamics

