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Abstract: Empirical force field-based studies of biological macromolecules are becoming a common tool for
investigating their structure–activity relationships at an atomic level of detail. Such studies facilitate interpretation of
experimental data and allow for information not readily accessible to experimental methods to be obtained. A large part
of the success of empirical force field-based methods is the quality of the force fields combined with the algorithmic
advances that allow for more accurate reproduction of experimental observables. Presented is an overview of the issues
associated with the development and application of empirical force fields to biomolecular systems. This is followed by
a summary of the force fields commonly applied to the different classes of biomolecules; proteins, nucleic acids, lipids,
and carbohydrates. In addition, issues associated with computational studies on “heterogeneous” biomolecular systems
and the transferability of force fields to a wide range of organic molecules of pharmacological interest are discussed.
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Introduction

Empirical force field-based methods represent a major tool for the
application of theoretical approaches to investigate structure–ac-
tivity relationships in biological systems.1,2 Currently, MD simu-
lations of systems of over 100,000 atoms or more can be per-
formed for time periods in the nanosecond regimen and beyond.
Accessing systems of such sizes and time scales is based on ever
increasing computer power, as exemplified in Moore’s law,3 com-
bined with algorithmic developments allowing for efficient use of
highly parallel computers. Central to the continued and future
success of these methods is their accuracy, as judged by their
ability to reproduce experimentally accessible properties. Algorith-
mic improvements, including more rigorous approaches to treat
long range nonbond interactions, including Ewald4,5 and other
boundary methods,6–8 and improved integrators,9–13 that allow for
proper thermodynamic ensembles to be simulated, have made a
major contribution towards improved accuracy. However, the
quality of the force fields themselves, combined with their proper
implementation, may be considered the most important determi-
nant of the accuracy of these empirical methods.

In the present review we will give a summary of empirical
force fields, with emphasis on those commonly used for empirical
studies of biomolecules. This will include presentation of the form
of the potential energy function commonly used in biomolecular

force fields, considerations as to the proper implementation of
biomolecular force fields and the different types of solvation
models in use, including both explicit and implicit models. Fol-
lowing this will be overviews of the force fields in use for the
different classes of biomolecules; proteins, nucleic acids, lipids,
and carbohydrates, as well as considerations for simulations of
heterogeneous biomolecular systems that include more than one
class of biomolecule and to the applicability of force fields to the
wide-range of organic molecules of pharmaceutical interest.

The ultimate goal of the present overview is facilitation of the
application of empirical force fields to biological systems, supply-
ing users with the information required to select the most appro-
priate force field for the system under study. However, it should be
stated that the author’s intimate relationship with the CHARMM
force fields14,15 may lead to some bias in the present article. Thus,
when reading this review, as when using a force field, the source
should be considered when analyzing the outcome.
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Potential Energy Functions

The core of any force field is the potential energy function used to
describe the relationship of the structure, R! , to the energy, U, of the
system of interest. However, a potential energy function alone
does not make a force field. It is the combination of the potential
energy function with the parameters used in that function, as
described below, that yield a force field. In the remainder of this
section details of the potential energy functions used in biomolec-
ular force fields will be presented followed by issues associated
with the parameters themselves.

Equation (1) shows an example of what is referred to as a Class
I additive potential energy function. The form of this function is
similar to that applied in early force fields16 and is still the form
used in biomolecular force fields commonly in use as of the
writing of this article. As is evident, eq. (1) is comprised of a
collection of simple functions
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to represent a minimal set of forces that can describe molecular
structures. Bonds, angles, and out-of-plane distortions (improper
dihedral angles) are treated harmonically and dihedral or torsional
rotations are described by a sinusoidal term. Interactions between
atoms use a Lennard–Jones (LJ) 6–12 term to describe the atom–
atom repulsion and dispersion interactions combined with electro-
statics treated via a Coulombic term. This simple form for the
potential energy function is necessitated by computational consid-
erations, allowing studies on systems of 100,000 or more atoms.
However, via proper adjustment of the parameters in eq. (1), this
or similar functional forms can describe biological molecules with
high accuracy.

In eq. (1), b is the bond length; $, is the valence angle; &, is the
dihedral or torsion angle; (, is the improper angle; and rij is the
distance between atoms i and j. Parameters, the terms that repre-
sent the actual force field, include the bond force constant and
equilibrium distance, Kb and b0, respectively; the valence angle
force constant and equilibrium angle, K$, and $0, respectively; the
dihedral force constant, multiplicity and phase angle, K&, n, and ',
respectively; and the improper force constant and equilibrium
improper angle, K( and (0, respectively. Collectively, these rep-
resent the internal or intramolecular parameters. Nonbonded pa-
rameters between atoms i and j include the partial atomic charges,
qi, and the LJ well-depth, )ij, and minimum interaction radius,
R

min, ij
, used to treat the van der Waals (vdW) interactions. These

terms are also referred to as the interaction or external parameters.
Typically, )i and Rmin,i are obtained for individual atom types and
then combined to yield )ij and Rmin,ij for the interacting atoms via
combining rules (see below). The dielectric constant, ), is typically
set to 1, corresponding to the permittivity of vacuum, in calcula-

tions that incorporate explicit solvent representations; alternative
methods to treat the solvent environment are discussed briefly
below. The terms contributing to the energy in eq. (1) are common
to the majority of currently used biomolecular force fields, includ-
ing CHARMM,14,15 AMBER,17 GROMOS,18 OPLS,19 among
others.

Beyond eq. (1) are additional or alternate terms for both the
internal and external aspects of the force field. A number of force
fields, often referred to as Class II force fields, include higher order
terms to treat the bond and valence angle terms and/or cross terms
between, for example, bonds and valence angles or valence angles
and dihedrals.20–25 These terms increase the accuracy of force
fields to treat conformational energies especially at geometries
significantly far from the minimum-energy or equilibrium values.
They also facilitate the accurate treatment of vibrational spectra,
although Class I force fields yield good quality spectra when
proper optimization of the parameters is undertaken. Other alter-
natives include the use of a Morse function for bonds; such a
function allows for bond breaking in an empirical force field, and
a cosine-based angle term that is well behaved for near-linear
valence angles.26,27 With respect to the dihedral term a recent
improvement avoids singularities associated with derivatives of
torsion angle cosines and allows for application of any value of the
phase28 and, more recently, was the introduction of a two-dimen-
sional (2D) grid-based dihedral energy correction map29,30 that
allows for any 2D dihedral surface [e.g., a quantum mechanical
(QM) *,+ surface of the alanine dipeptide] to be reproduced nearly
exactly by the force field (see below). In general, for biomolecular
simulations performed in the vicinity of room temperature, the
Class I force fields adequately treat both the intramolecular dis-
tortions, including relative conformational energies associated
with large structural changes, which may occur in biomolecules.

Alternate forms of the nonbonded portion of potential energy
functions involve both alternate treatment of vdW interactions and the
electrostatics. The three primary alternatives to the LJ 6–12 term
included in eq. (1) are designed to “soften” the repulsive wall asso-
ciated with Pauli exclusion. For example, the Buckingham potential31

uses an exponential term to treat repulsion while a buffered 14–7 term
is used in the MMFF force field.32 A simple alternative is to replace
the r12 repulsion with an r9 term. All of these forms more accurately
treat the repulsive wall as judged by high level QM calculations.33

However, as with the harmonic internal terms in Class I force fields,
the LJ term appears to be adequate for biomolecular simulations at or
near room temperature.

Currently, the majority of biomolecular force fields of general
applicability treat the electrostatic interactions using the Coulom-
bic term included in eq. (1). This model uses static, partial atomic
charges [i.e., qi in eq. (1)] and is often referred to as an additive
force field. Additive force fields, via the combination of the Cou-
lombic and LJ terms, have been shown to treat hydrogen bonding
with reasonable accuracy, including the angular dependencies.34

Accordingly, the majority of force fields no longer include explicit
terms for hydrogen bonding as was done in earlier force fields,14,35

although exceptions exist.20 Notable is that the current electrostatic
models do not explicitly treat electronic polarizability. Instead,
polarizability is included implicitly by choosing partial atomic
charges that overestimate molecular dipoles.36 This overestimation
is designed to approximate electrostatic interactions that occur in
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the aqueous, condensed phase environment common to biomol-
ecules. Using this approximation for the polarizability, additive
force fields have been shown to do quite well in treating both
structure and energetics in the condensed phase. For example,
accurate heats of vaporization and molecular volumes,37–41 free
energies of solvation,42–45 and crystal heats of sublimation and
lattice parameters46–48 have been reported. Although use of the
additive models has been shown to reproduce various experimental
properties for a number of systems, including biomolecular sys-
tems, recent free energy of solvation calculations49 indicate that
improvements in the models can be made; such improvements may
be performed in the context of the current form of the potential
energy function or in the context of an extended function that
contains explicit treatment of electronic polarizability (see below).
An example of an inherent limitation in current additive models is
their inability to simultaneously treat molecules in environments of
significantly differing polar character with high accuracy. A simple
case is the need to significantly overestimate the interaction energy
of the gas phase water dimer in order to accurately treat the pure
solvent (see below).42,50

Electronic Polarizability

The explicit inclusion of electronic polarization will represent the
next significant development in the treatment of nonbonded inter-
actions in biomolecular force fields,51,52 which are referred to as
polarizable or nonadditive force fields. Methods to treat polariz-
ability have recently been reviewed.53 Briefly, electronic polariz-
ability may be included in a potential energy function as an
extension of eq. (1) with a term that describes the energy associ-
ated with polarization of the charge distribution, Upol, which is
typically determined via

Upol !
1
2 !

i

,iEi (2)

where ,i is the dipole moment of atom i and Ei is the electrostatic
field at atom i. Solving eq. (2) is generally performed iteratively,
allowing for the change in Ei as a function of ,i to converge. The
dipole moment may be expressed in terms of the polarizability of
an atom, -i, where ,i # -iEi, with the polarizabilities being
parameters that are assigned based on atom type. There are mul-
tiple methods to explicitly treat polarizability, the most common
methods being induced dipole models,54–58 fluctuating charge
models,59–65 or a combination of those methods.66,67 Induced
dipole models generally apply an isotropic dipole moment to each
atom, i, using a dipole field tensor, Tij, to treat the interaction with
the dipole moment on atom j
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i
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where Ei
0 is the electrostatic field due to the static charges. In the

fluctuating charge, or electronegativity equalization model an
atomic dipole is not added but, rather, the partial atomic charges in
a molecule are allowed to redistribute to yield equivalent electro-
negativity on each atom. This leads to a change in the overall

molecular dipole moment rather than of the individual atom di-
poles as occurs with the induced dipole model. In this approach,
each atom type is assigned electronegativity, &, and hardness, J,
parameters where the latter is related to the ability of an atom to
transfer charge. Charges are then optimized to minimize the over-
all electrostatic energy, Eelec. with respect to the charges, qi, via:

Eelec ! !
i

"&iqi #
1
2

Jiqi
2#. (4)

Once convergence of the charges has been achieved, the total
electrostatic energy is calculated via the Coulombic term in eq. (1).
Another alternative is the classical Drude oscillator,68,69 also re-
ferred to as the Shell model. In this model an additional “Drude”
particle is attached to the nucleus of each atom, with a charge, qi,D,
assigned to the Drude particle and the atomic charge, qi, set to
qi,0 & qi,D, where qi,0 is the static partial atomic charge. The
atomic polarizability, -, is determined via - # qi,D

2/k, where k is
the force constant of a harmonic spring between the nucleus and
the associated Drude particle. Polarization of the system is attained
by allowing the positions of the Drude particles to relax in the
external electrostatic field, with the electrostatic energy again
being obtained via the Coulombic term in eq. (1) where all the
atomic and Drude particle charges are taken into account. The
Drude oscillator method has only been used in a few studies thus
far.50,70–72 In all of the approaches used to explicitly treat elec-
tronic polarization, the polarizability may be solved iteratively,
analytically, or, in the case of MD simulations via extended
Lagrangian methods.12,59 Extended Lagrangian methods treat the
polarizability as a dynamic variable in the simulation. These meth-
ods are important for the inclusion of polarizability in biomolec-
ular force fields as they offer the necessary computational effi-
ciency to perform simulations on large systems.

To date, the majority of work on polarizable force fields has
involved water, where polarizable water models have been shown
to accurately treat both the gas and condensed phase properties.
Examples include models by a number of workers.50,55–58,60,73–75

In many of these models there was an increased ability to more
accurately treat changes in properties, such as the density as a
function of temperature, compared to additive water models. Other
examples where the inclusion of electronic polarization has lead to
improvements in the modeling of molecular interactions includes
the solvation of ions,54,61,70,76 ion-pair interactions in micellar
systems,77 condensed phase properties of a variety of small mol-
ecules,60,65,78–81 cation–. interactions,82 and in interfacial sys-
tems.83 However, although application of polarization to small
molecules has made progress, developments in the area of biomac-
romolecular force fields have been limited. The first reported study
of macromolecular simulations involved proteins in the absence of
solvent, with the duration of the simulations being only 2 ps.84

More recently, simulations of several small proteins using a fully
polarizable force field, including solvent and for time durations
into the ns range85 and a simulation of DNA in solution, including
counterions,86 have been reported. Thus, progress is being made
towards the development of polarizable force fields for biomol-
ecules.

1586 Mackerell • Vol. 25, No. 13 • Journal of Computational Chemistry



Although the reasons for the lack of success of polarizable
models in macromolecular systems are not totally clear, one pos-
sibility is the inability to directly transfer gas phase molecular
polarizabilities to the condensed phase.50 Such an effect is asso-
ciated with the Pauli exclusion principle such that the flexibility of
the electron cloud to distort due to induction by the environment is
hindered by the presence of adjacent molecules in the condensed
phase.87 This would cause a tendency towards overpolarization in
condensed phase environments when gas phase polarizabilities are
applied directly. Further studies are required to better understand
this phenomenon.

Despite the problem mentioned in the previous paragraph, it
may be anticipated that in the near future successful application of
multiple polarizable models to biomolecular simulations will oc-
cur. Only once that occurs and highly refined force fields that
include polarizability have been developed, will it be possible to
judge the improved accuracy and utility of such models over
current additive models. However, it is likely that for many appli-
cations significant gains in accuracy will not be obtained using
polarizable models, ensuring the continued utility of the additive
force fields currently in use. Furthermore, in situations where
sampling is more important than higher accuracy, the lowered
computational costs of additive models are advantageous.

Combining Rules

One of the important considerations that limits the mixing of
parameters from different force fields are the combining rules used
for the LJ interactions. Combining rules are used to take the LJ
parameters for individual atoms (e.g., well depth, )i, and minimum
radius, Rmin,i, in eq. (1) and combine them to yield the atom i-atom
j LJ interactions for each specific atomic pair. For example, in
CHARMM and AMBER the “combined” )ij values are obtained
via the geometric mean, )ij # sqrt()i * )j), and Rmin, ij via the
arithmetic mean, Rmin, ij # (Rmin, i & Rmin, j)/2, referred to as the
Lorentz–Berthelodt rules. Alternatively, OPLS applies the geomet-
ric mean for both the well depths and radii88 and other methods
have been discussed.33 In cases where the combining rules for two
force fields differ, transferring parameters between those force
fields is typically not recommended. If such a transfer is per-
formed, testing of the parameters with the new combining rules
via, for example, pure solvent simulations, is recommended. Also,
the user should be aware of the use of Rmin vs. / for the radius,
where Rmin represents the radius at which the LJ function is a
minimum, as used in AMBER and CHARMM, vs. where the LJ
energy is zero in the case of /, as in OPLS.

1,4 Interactions

In empirical force fields the 1,2 (i.e., nonbond interactions between
bonded pairs of atoms) and 1,3 (i.e., nonbond interactions between
atoms separated by two covalent bonds) nonbonded interactions
are neglected, such that the forces between 1,2 and 1,3 atom pairs
are dictated by the internal parameters, the bonds and valence
angles. 1,4 Nonbonded interactions, involving atoms separated by
three covalent bonds, do have nonbonded contributions as well as
their spatial relationship being influenced by the internal terms,
including the dihedral term. However, different biomolecular force

fields treat the 1,4 nonbond interactions differently. This is impor-
tant as the 1,4 interactions contribute to the conformational ener-
gies, influencing both the relative energies of minima and the
barriers betweens those minima. The all-atom CHARMM biomo-
lecular force fields do not scale the 1,4 terms (scale factor # 1). In
the original AMBER force fields a 1,4 scale factor 0.5 was used.35

Due to difference in charge distributions in OPLS, a 1,4 scale
factor of 0.83 (1/1.2) was used;88 this value has subsequently been
adopted in the new AMBER protein and nucleic acid all atom
force fields.17 Thus, the use of different 1,4 scaling factors further
limits the ability to transfer parameters between different force
fields.

Lone Pairs

In early force fields lone pairs were included to improve the
treatment of interactions between molecules, as in the ST2 water
model.89 However, it has been shown that hydrogen bonding can
be adequately treated based on models that only include charges on
atomic centers.34 In certain cases, such as the ability to reproduce
QM data for in-plane vs. out-of-plane interactions between pyri-
dine and water90 the inclusion of lone pairs improves accuracy.
Indeed, the recently developed TIP5P water model contains lone
pairs.91,92 In general, it may be assumed that the inclusion of any
additional centers to a force field will improve the accuracy due to
the increased number of parameters available. However, such
additional centers could lead to complications in parameter opti-
mization due to the parameter correlation problem.36 For example,
the presence of lone pairs may further complicate the determina-
tion of partial atomic charges via fitting to QM electrostatic po-
tentials (ESP), which is already problematic as emphasized by the
need to include restraints (RESP) when using this approach.93

All-Atom vs. United Atom Force Fields

Biomolecular force fields can explicitly treat all the atoms in the
molecule, referred to as an all-atom force field. Alternatively, the
hydrogen atoms can be neglected to different extents, with the
nonbond parameters of the atom to which the hydrogen was
attached adjusted accordingly. These are referred to as extended or
united atom force fields. In most cases, united atom force fields
explicitly include polar hydrogens, facilitating the treatment of
hydrogen bonding. Although many of the aspects of intermolecular
interactions can be accounted for in united atom models, certain
interactions will be poorly treated, an example being aromatic-
aromatic interactions.94,95 Currently, both all-atom and united-
atom force fields are used for biomolecular simulations, as dis-
cussed in more detail below.

Treatment of Solvation

Accurate treatment of the condensed aqueous environment is obvi-
ously an essential aspect of a force field being used for biomolecular
simulations. Such treatment may be performed using explicit or
implicit models, with the former being a more microscopically com-
plete method while the latter having the advantage of savings in
computer time as well as directly yielding free energies of solvation.
Explicit water models used in biomolecular simulations include the
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TIP3P, TIP4P,96 SPC, extended SPC/E,97 and F3C98 models. All of
these models yield satisfactory agreement for bulk water at ambient
temperatures. TIP3P is probably the most commonly used model;
limitations include underestimation of the height of the second or
tetrahedral peak in the OOO radial distribution function and a diffu-
sion constant significantly larger than experiment.99 On the other
hand, the model does treat energetics satisfactorily and because the
majority of biomolecule–water interactions involve first or second
shell hydration, the lack of long-range structure is often not problem-
atic. The SPC models are similar to the TIP3P, though, by using a
tetrahedral geometry (i.e., H–O–H angle # 109.47°) have increased
structure as evidenced by a more-defined tetrahedral peak in the
OOO radial distribution function. The SPC/E model includes a
correction for the polarization self-energy that yields improved struc-
ture and diffusion properties. However, this correction leads to an
overestimation of the water potential energy in the bulk phase. Such
an overestimation may perturb the energetic balance of solvent–
solvent, solute–solvent, and solute–solute interactions and, therefore,
must be considered when using this model in biomolecular simula-
tions. The TIP4P model, which includes an additional particle alone
the HOOOH bisector, overcomes many of the limitations listed
above at the expense of increased computational costs due to the
additional particle in the model. In addition, recent advances in
additive water models have been made,91,100 although their use in
biomolecular simulations has not yet been widely validated. Finally,
when selecting a water model to use for a particular study, the most
important consideration is compatibility with the biomolecular force
field being used. This is due to most force fields being developed in
conjunction with a specific water model (e.g., AMBER, OPLS and
CHARMM with TIP3P, OPLS also with TIP4P, GROMOS with
SPC, ENCAD with F3C), such that it is best to use a force field with
its prescribed water model unless special solvent requirements are
important.

Implicit solvation models101,102 have made significant ad-
vances in recent years, as recently reviewed by Feig and
Brooks.103 Such models offer significant computational savings
while yielding an accurate treatment of solvation. These ap-
proaches are typically used in studies were extensive sampling of
conformational space is required, such as in protein folding. How-
ever, these models can fail when highly specific water–biomol-
ecule interactions are important. Early implicit solvation models
included simple treatments such as distance-dependent dielectric
constants (r-dielectric) and atomic solvent accessibility based free
energy contributions to solvation.104 A significant improvement in
the treatment of solvation is the use of the Poisson–Boltzmann
(PB) model, where contributions from solvent polarization along
with the asymmetric shapes of biological molecules are taken into
account.105 Improvements in the accuracy of PB methods have
been obtained by optimizing atomic radii to reproduce experimen-
tal free energies of solvation of model compounds representative
of biomolecules.106,107 Although PB methods can yield free ener-
gies of solvation, they are relatively computationally expensive
making them of limited value for molecular dynamics (MD) sim-
ulations. An effective alternative are generalized-Born (GB)-based
solvation models.108 A variety of GB models have been devel-
oped, having computational speeds significantly enhanced over PB
or explicit solvent treatments, while yielding free energies of
solvation with accuracy comparable to the PB methods.109–113 In

addition, both the PB or GB methods can be combined with free
energy solvent accessibility (SA) terms that account for the hy-
drophobic effect,114,115 referred to as PB/SA or GB/SA ap-
proaches. Recently, a GB-based implicit solvent model was intro-
duced that includes a more rigorous treatment of van der Waals
dispersion contributions beyond solvent accessibility related
terms.116 Other implicit models that have been used in biomolec-
ular simulations include the Langevin Dipoles Model117 and the
EEF1 model.118

A useful application of PB/SA and GB/SA methods is to first
perform MD simulations of biomolecules using an explicit solvent
representation followed by estimation of the free energy of solva-
tion using the solute coordinates from the simulation (i.e., biomol-
ecule only with the solvent omitted).119 This allows for determi-
nation of the free energy of solvation of a biomolecule averaged
over the length of a simulation, using structures obtained with an
explicit solvent representation. This approach is particularly at-
tractive for the calculation of free energies of binding of macro-
molecular and small molecule–biomolecule complexes.120,121

This type of approach should also be useful for the estimation of
ligand–protein binding,122 at a computationally reasonable cost as
required for testing of large numbers of drug candidates.

Treatment of Long-Range Interactions

The most important forces dictating the properties of biomolecules
are the nonbonded interactions. However, the determination of
these interactions represents the most computationally expensive
part of empirical force field calculations. Accordingly, approaches
were developed to truncate both the electrostatic and LJ atom–
atom interactions at selected distances, thereby limiting the num-
ber of pair-wise interactions that had to be computed.14 In early
force fields, truncation distances in the range of 8 to 9 Å were
typical, with the force field being optimized using those truncation
or cutoff distances. In general, it is most desirable to use a given
force field with the truncation distance for which it was developed.
An example of the importance of this is the TIP3P water model,
which was developed with the electrostatic interactions truncated
at 8.5 Å with a cubic switching function used to smooth the
potential energy to zero over the final 1 Å.96 Later studies using the
TIP3P model with longer truncation distances or with long-range
interactions treated via Ewald methods (see below) showed a
significant increase in the diffusion constant of the model above
the experimental value.99 However, more accurate treatment of
biomolecular systems is generally expected via inclusion of more
or, ideally, all long-range interactions. This may be obtained
simply by increasing the truncation distance as allowed by in-
creases in computer power with, importantly, use of proper func-
tions that gradually smooth the nonbond interaction energies14 and
forces123 to zero. Alternatively, and ultimately more desirable, are
methods that allow for all long-range interactions to be taken into
account. With respect to the LJ term, methods to account for the
truncated LJ contribution have been developed that typically treat
the region beyond the truncation distance as being homogenous
(i.e., an “average” over all LJ atom types in the system).124,125 It
is often assumed that the LJ contribution at longer distances is
insignificant due to the r6 distance dependence; however, it should
be emphasized that all the truncated contributions are favorable,
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such that summation over those contributions becomes significant,
especially in systems dominated by aliphatic groups, as in lipids.
For the electrostatic interactions various multipole methods,
where, beyond the truncation distance, interactions are treated as
atom–multipole interactions,126–128 were developed and shown to
be useful. These have, to a large extent, been replaced by the use
of the Ewald summation method,4 that takes advantage of crystal
symmetry combined with reciprocal space to treat the long-range
electrostatic interactions (i.e., periodic boundaries are, typically, of
cubic or orthorhombic symmetries). Of particular impact has been
the particle mesh Ewald (PME) method129 that has been imple-
mented in a number of the widely used simulation packages; a
number of other Ewald-based implementations also exist.130–132

When using Ewald methods it is important to use a periodic system
of adequate size to avoid possible artifacts associated with the
biomolecule “feeling” an electrostatic potential identical to itself in
the periodic environment (e.g., electrostatic interactions between
the primary biomolecule and its images) that may damp the dy-
namics of the system.133,134 To avoid such artifacts, use of a
minimum of a 7 Å water layer beyond the macromolecule in each
direction of the periodic system is recommended.135 In many cases
the macromolecular size disallows use of a periodic system; in
such cases alternatives based on the stochastic boundary approach
may be used.136,137 In this approach a spherical system is created
that is surrounded by a potential that maintains the density of the
system. This potential includes a reaction field that accounts for
particles in the region beyond the sphere that have been omitted
and, in certain cases, will apply Langevin dynamics to waters at
the edge of the sphere to supplement the reaction field. These
methods can be used with multipole approaches to treat long-range
electrostatic interactions. Recent developments in stochastic
boundaries allow for adjusting the sphere size to produce a con-
stant pressure scenerio as well as reaction fields that represent
heterogeneous atom distributions associated with, for example, the
region of the protein beyond the sphere that was deleted.6,7 Recent
applications of these methods combined with potential of mean
force calculations have yielded novel insights into ion channels138

and base flipping in DNA.139 In the end, when setting up a
simulation system the balance between accuracy and computa-
tional feasibility must be taken into account. Periodic boundary
conditions may be considered the most rigorous approach and,
therefore, should be considered first, followed by stochastic
boundary approaches. In all cases, it is recommended that the
approach selected be tested on model biomolecular systems for
which adequate experimental data exists to validate the approach.
Finally, although most of the current force fields were developed
using specific atom truncation methods, it is considered more
appropriate to treat all the long-range contributions to both the LJ
and electrostatic terms.

Biomolecular Force Fields

To understand the applicability of a given force field it is important
to be aware of the approaches used in its development. Accord-
ingly, an overview of the assumptions in and the methodologies
used for the optimization of current biomolecular force fields will
be presented. This will be followed by a survey of the force fields

used for the different classes of biomolecules, with emphasis
placed on the range of applicability of the various force fields.
With respect to protein force fields, a recent review by Ponder and
Case nicely supplements the present review.52

Force Field Optimization

As stated above, a potential energy function is not a force field
until the parameters are available that allow for the energies and
forces of the selected molecules to be calculated. It is the ap-
proaches used to obtain the parameters that ultimately dictate the
applicability and quality of the force field. During such develop-
ment a very important step is the selection of the target data to be
used as the basis for the parameter optimization. For a variety of
force fields this target data is comprised of QM results for model
compounds representative of the biomolecules of interest. For
example, the alanine dipeptide is the quintessential model for
optimization of the protein backbone parameters, often being sup-
plemented with data from the glycine and proline dipeptides (Fig.
1) as these represent the amino acids in which the covalent struc-
ture of the backbone differs from the remaining 18 natural amino
acids. QM data can be obtained on the geometries, allowing for
optimization of the bond and valence angle equilibrium constants
and the dihedral multiplicity and phase, and on the vibrational
spectra, including assignments of the normal modes,140 allowing
for adjustment of the force constants. Conformational energies as
a function of rotation about selected bonds (e.g., *,+ in Fig. 1)
from QM calculations are additional target data for the optimiza-
tion of the dihedral parameters.141,142 Although QM data is be-
guiling due to the significant amount of information that can
readily be extracted and used as target data and, with increases in
computer power, can be applied to larger systems, including small
peptides,143 nucleosides and nucleotides,144,145 “exact” reproduc-
tion of QM data by a force field designed for condensed phase
calculations may be inappropriate due to the lack of condensed
phase contributions in the QM calculations as well as issues
associated with the level of theory. A good example occurs with
the geometry of the peptide bond (Table 1).146 In the gas phase the
peptide bond, CON, is relatively long based on both experimental
and QM data; however, upon moving to the condensed phase there
is a significant decrease in the bond length, again seen both
experimentally and in QM supramolecular calculations where wa-
ter or formamide molecules are included to mimic the condensed
phase environment. The opposite effect occurs with the CAO
bond and analogous variations occur with the CmOCON and
CmOCAO angles. Thus, use of the gas phase QM data directly
would yield geometries not appropriate for the condensed phase.

Figure 1. (A) Alanine, (B) proline, and (C) glycine dipeptides used
for parameter development of the protein backbone. Shown in the
figures are the *,+ dihedral angles that define the Ramachandran
map.169
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Similar effects also occur with conformational energies. An
example is the rotatable bonds in the phosphodiester backbone of
DNA and RNA. Extensive QM calculations on model compounds
representative of the backbone have yielded a variety of energetic
target data147–149 for optimization of the associated dihedral pa-
rameters. However, accurate reproduction of that data leads to
systematic deviations in the sampling of dihedrals in the phos-
phodiester backbone from survey data from the nucleic acid data-
base (NDB).150 An example for the 0 dihedral in DNA is shown
in Figure 2.48 QM and empirical potential energies as a function of
0 are shown in Figure 2A for the model compound included in the
figure. The initial energy surface (open squares) was based on
parameters (set 1) optimized to reproduce the QM surface in the
region of 60°, the region of 0 that is sampled in duplex DNA and
RNA crystal structures. However, when this parameter set was
applied in an MD simulation, the resulting 0 probability distribu-
tion (Fig. 2B) was too narrow compared to NDB survey data.
Subsequent alterations of the parameters to systematically “soften”
the energy surface leading to poorer reproduction of the QM
energy surface (closed squares and diamonds) led to improved
agreement of the MD distribution with the NDB data. This em-
pirical or knowledge-based optimization approach was used for the
remainder of the dihedrals in the CHARMM27 nucleic acid force
field and has been used elsewhere for the optimization of nucleic
acid and protein force fields (see below). With respect to the
peptide backbone, a novel extension of the potential energy func-
tion for the treatment of the *,+ dihedrals has allowed for the
relationship of QM conformational energy surfaces to properties
obtained from simulations of proteins in crystal environments to be
tested more rigorously,29 further indicating limitations in the use of
QM data directly in certain cases. However, it should be empha-

sized that the capability to carefully examine geometric, vibra-
tional, and conformational properties, allowing for quantification
of condensed phase contributions, is limited to systems for which
extensive experimental data is available, such as nucleic acids and
proteins. In such scenarios, careful parameter optimization taking
experimental data into account can yield improved accuracy in the
force field. However, for many systems such experimental data is

Table 1. Comparison of Peptide Bond Geometries from QM and Experimental Methods.

Experimental MP2/6-31 G(d)b

Gasc Crystald Surveye Gas 3H2O H2O,2FM

Bonds
CmOC 1.520 (5) 1.515 (3) 1.52 (1) 1.514 1.510 1.512
CON 1.386 (4) 1.325 (3) 1.33 (1) 1.365 1.339 1.337
NOCm 1.469 (6) 1.454 (3) 1.45 (2) 1.448 1.454 1.454
CAO 1.225 (3) 1.246 (2) 1.23 (1) 1.232 1.255 1.254

Angles
CmOCON 114.1 (15) 116.3 (6) 116 (2) 115.3 117.1 116.6
OACON 121.8 (4) 121.7 (6) 123 (1) 123.1 122.1 122.6
CmOCAO 124.1 121.9 (6) 121 (4) 121.6 120.9 120.9
CONOCm 119.7 (8) 121.3 (6) 122 (1) 122.1 121.1 121.3

Bonds and angles in Å and degrees, respectively. Cm indicates a terminal methyl carbon. Values in parenthesis represent
the standard deviation in the final digit(s).
bFrom ref. 324, 3H2O indicates two water molecules hydrogen bonding to the carbonyl oxygen and one water molecule
hydrogen bonding to the amide proton; H2O,2FM indicates one water molecule and one formamide hydrogen bonding
to the carbonyl oxygen and one formamide hydrogen bonding to the amide proton; see original reference for the exact
geometries.
cGas phase electron diffraction data from ref. 325.
dCrystal values are from ref. 326 for the 0.9 occupancy structure.
eSurvey of the Cambridge Crystal Data Bank from ref. 161.

Figure 2. Potential energies (A) and probability distributions (B) as a
function of the 0 dihedral. The potential energy surfaces (A) were
obtained using the presented compound at the QM HF/6-31&G* (bold
line) level of theory and for three empirical parameter sets designated
1 (open squares), 2 (triangles), and 3 (diamonds). Probability distri-
butions are from the NDB survey (bold line) from crystal simulations
of the CGATCGATCG B form decamer using the same three empir-
ical parameter sets 1 (open squares), 2 (triangles), and 3 (diamonds).
Note the change in the X-axis upon going from A (0 to 360°) to B (0
to 120°). See ref. 48 for methodological details.
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not available (e.g., drug-like molecules), such that QM results
represent the best target data available for parameter optimization.

Due to the dominant role of the nonbond or external parameters
in dictating thermodynamic properties and their role in biomolec-
ular structure and interactions, proper optimization is essential for
any successful biomolecular force field. A large number of studies
have gone into the determination of the electrostatic parameters,
that is, the partial atomic charges. For biomolecular force fields the
most common charge determination methods are the QM electro-
static potential (ESP) and supramolecular approaches. Other vari-
ations include bond charge increments151,152 and electronegativity
equilization methods.153 ESP-based methods are based on the
optimization of charges to reproduce a QM determined ESP
mapped onto a grid surrounding a model compound. Such methods
are convenient, and a number of charge fitting methods based on
this approach have been developed.154–157 They allow for charges
to readily be determined for any molecule accessible to the appro-
priate QM level of theory. However, the ability to unambiguously
fit charges to an ESP is not trivial,158 and charges on “buried”
atoms tend to be underdetermined, requiring the use of restraints
during fitting,93 a method referred to as Restrained ESP (RESP)
fitting. In addition, because the charges are based on a gas phase
QM wave function, they may not necessarily be consistent with the
condensed phase, although recent developments are addressing
this limitation.159 Also, consideration of multiple conformations
must be taken into account.160 An alternative is the supramolecular
approach where the charges are optimized to reproduce QM de-
termined interaction energies and geometries of the model com-
pound with, typically, individual water molecules, although model
compound dimers are often used.88,161 This approach is somewhat
tedious in that the supramolecular complexes used must be created
individually and the QM calculations performed followed by the
empirical calculations. However, in this approach the interacting
pair in the QM calculation leads to local electronic polarization,
which is then implicity included in the obtained charges; a result
important for additive force fields where implicit inclusion of
electronic polarizability is required (see above). It should be noted
that in CHARMM and OPLS, whose charges are obtained using
the supramolecule approach, functional groups are assigned inte-
ger charges, allowing those charges to be transferred between
molecules, facilitating the assignment of charges to novel mole-
cules. In both the ESP and supramolecular approaches the QM
level of theory of choice for additive force fields has been HF/6-
31G* as it is known to overestimate dipole moments160 and
interaction energies. Such overestimations are again desirable for
additive force fields, as they lead to partial charge distributions that
include the implicit polarization required for condensed phase
simulations. Also, it should be reiterated that charges from both the
supramolecular and ESP approaches are conformation dependent,
requiring care to select the appropriate conformation(s) when
performing the charge determination.

Proper optimization of the vdW or LJ parameters is one of the
most important aspects in the development of a force field for
condensed phase simulations. Early efforts by Jorgensen devel-
oped the use of condensed phase simulations, typically neat liq-
uids, as the basis for optimization of the LJ parameters,37,162

Typically, once partial atomic charges were assigned via the su-
pramolecular approach, the LJ parameters for a model compound

were adjusted to reproduce the experimentally determined heat of
vaporization and density as well as isocompressibilities and heat
capacities when available. Similarly, heats or free energies of
aqueous solvation or heats of sublimation and lattice geome-
tries46,163 can be used as the target data for the LJ optimization.
Although such methods are effective, the parameter correlation
problem allows for LJ parameters for different atoms in a molecule
(e.g., H and C in ethane) to compensate for each other such that it
is difficult to accurately determine the “correct” LJ parameters of
a molecule based on reproduction of condensed phase properties
alone.36 To overcome this problem a method has been developed
that determines the relative value of the LJ parameters based on
high level QM data164 and the absolute values based on the
reproduction of experimental data.43,45 This approach is again
tedious, as it requires supramolecular interactions involving rare
gases; however, once satisfactory LJ parameters are optimized for
atoms in a class of functional groups they can often be directly
transferred to other molecules with those functional groups with-
out further optimization.

Finally, the correlation among parameters in the potential en-
ergy function should be emphasized. First, the LJ parameters and
partial atomic charges are highly correlated, such that LJ param-
eters determined for a given set of charges are typically not
appropriate for charges determined via another methodology. Sec-
ond, the internal parameters are dependent on the nonbond param-
eters. For example, the energy surface for rotation about a bond
will typically be dominated by the dihedral term, but will also
contain contributions from the electrostatic and LJ terms.165 Thus,
changing, for example, the partial atomic charges will lead to
changes in the energy surface, requiring readjustment of the dihe-
dral parameters. Such correlations are another factors leading to
the inability to combine parameters from different force fields and
still maintain the proper balance of the intra- and intermolecular
forces. In addition, the importance of using the correct water
model with a given force field must be reiterated, as the nonbonded
parameters in a force field are optimized to be compatible with a
specific water model. Accordingly, application of an alternate
water model with the force field may yield spurious results.

Protein Force Fields

The first successful MD simulation of a biological macromole-
cule166 was performed on a protein and protein simulation studies
continue to dominate the field. Current protein simulations use
both united-atom and all-atom force fields, although the majority
of protein MD simulation studies, excluding protein-folding stud-
ies, are performed using all-atom protein models, including the
OPLS/AA,88 CHARMM22,161 and AMBER (PARM99)17 force
fields.

Parameters for all three force fields were extensively optimized
with particular emphasis on the treatment of proteins. With OPLS
and CHARMM22 the partial atomic charges were based on HF/
6-31G* supramolecular data while the standard AMBER release
(parm99) is based on RESP charges fit to the same level of theory.
All three force fields used condensed phase simulations on an
extensive set of model compounds to determine the LJ parameters.
CHARMM22 and AMBER were primarily optimized based on the
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TIP3P water model while OPLS was developed to work with the
TIP3P, TIP4P, and SPC models. It should be noted that the
similarities of the water dimer interaction energy of these three
water models should allow the TIP4P and SPC models to be used
with CHARMM22 and AMBER, although rigorous tests have not
been performed. Thus, all three force fields model intermolecular
interactions well, although differences in the local charge distri-
butions have been pointed out,52 which may lead to differences in
the balance of the local interactions (e.g., relative hydrogen bond-
ing strength at the peptide bond NH vs. CO). It should be empha-
sized that such differences are important,45 as the goal of molec-
ular simulations is to elucidate atomic details of the properties of
biomolecules. Accordingly, when analyzing nonbond interaction
results from MD simulations the method used in the optimization
of the intermolecular parameters should be considered with respect
to its potential influence on the results.

Intramolecular parameters for CHARMM22 and AMBER were
both derived based on reproduction of a variety of experimental
and QM data for small model compounds. This included emphasis
on the reproduction of vibrational spectra for optimization of the
force constants. With OPLS, the internal portion of the force field
was originally taken from AMBER PARM9417 followed by opti-
mization of selected torsion parameters based on QM data, yield-
ing OPLS/AA.40 OPLS/AA has subsequently been updated via
reoptimization of selected torsions using higher level QM target
data.167 Similar reoptimization of the torsional terms has occurred
with the other force fields, as discussed in the following paragraph.
Overall, accurate treatment of the internal portion of the biomo-
lecular force fields via reproduction of vibrational and conforma-
tional energy data ensures that the intramolecular distortions the
molecules undergo during MD simulations will be representative
of the experimental regimen. Supporting the quality of the three
force fields in attaining such a representation is a recent compar-
ison of these three force fields in MD simulations of three proteins,
showing them to reproduce the experimental structures in a similar
fashion.168

An important issue in protein force fields is the treatment of the
conformational energies associated with *,+ (i.e., the Ramachan-
dran map,169 Fig. 1). The relative energies as a function *,+ will
have a significant influence on the sampling of conformational
space by the protein backbone in MD simulations. Typically, the
alanine dipeptide (Fig. 1) is the model compound used to study
*,+ conformational energies. This, and related compounds, are
small enough to allow for QM calculations at high levels of
theory170–172 the results of which may then be used as target data
for force field optimization. A comprehensive study of the ability
of a variety of empirical force fields to reproduce QM data on the
alanine dipeptide and the alanine tetrapeptide has been reported.142

In that work it was concluded that certain force fields were “better”
based on their ability to reproduce the QM target data. However,
other studies have shown that exact reproduction of QM data may,
in fact, leads to less accurate agreement with respect to experi-
mentally determined properties on proteins.161

Recently, the relationship between the reproduction of gas
phase QM data on the alanine dipeptide by a force field with the
sampling of *,+ in MD simulations was investigated in greater
detail exploiting an extension of the potential energy function.29,30

Using the sinusoidal dihedral function common to current potential

energy functions [eq. (1)] limits the ability of protein force fields
to accurately reproduce QM energetic data for the entire *,+
surface. To overcome this, extensions of the potential energy
function were tested, including *,+ crossterms and a 2D dihedral
energy grid correction map (CMAP) approach.29,30 Using the
CMAP approach the CHARMM22 protein force field was modi-
fied to reproduce the LMP2/cc-pVQZ//MP2/6-31G* gas phase
energy surface of the alanine dipeptide. This force field was then
applied to MD simulations of proteins in their crystal environ-
ments. From those simulations systematic differences in * and +
between calculated and experimental crystal structures were ob-
served. Motivated by these systematic differences, empirical ad-
justments to the alanine dipeptide conformational energy surface
were undertaken. The resulting force field significantly improves
the sampling of *,+ in MD simulations of selected proteins as
judged by the reproduction of survey data from the PDB,173,174 as
shown in Figure 3. In addition, the modified CHARMM22 force
field also better reproduces the sampling of *,+ conformational
space of the alanine dipeptide in solution (Fig. 3, lower panels)
compared to results from previously published QM/MM calcula-
tions.175,176 Subsequently, additional empirical optimization of the
alanine dipeptide conformational energies, empirical optimization
of the glycine dipeptide surface and inclusion of a proline dipep-
tide surface yielded a CHARMM22/CMAP force field included in
version 31 of CHARMM.30 Although additional tests verifying the
accuracy of this approach are ongoing (Rich Pastor, personal
communication; Peter Steinback, personal communcation; Mat-
thias Buck, personal communication), the inclusion of the 2D

Figure 3. *,+ PMFs based on MD simulations using the
CHARMM22 and CHARMM22 grid-corrected (CMAP) empirical
force fields and from a survey of the PDB (upper frames) and *, +
distributions from MD simulations of the alanine dipeptide (Ace-Ala-
Nme, lower frames) in solution using the CHARMM22161 and
CHARMM22 grid-corrected empirical force fields and previously
published data from a QM/MM model (SCCDFTB). PMF contours are
in 0.5 kcal/mol increments up to 6 kcal/mol above the global mini-
mum. PMFs were obtained from the respective probability distribu-
tions based on a Boltzmann distribution.199 See ref. 29 for more
details. Reproduced with permission from J Am Chem Soc 2004, 126,
698–699. Copyright 2004 Am Chem Soc.
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dihedral energy grid correction appears to significantly improve
the treatment of *,+ sampling in empirical force fields by allowing
accurate treatment of both low and high energy regions of *,+
space. It is anticipated that this approach will have general appli-
cability in empirical force fields for proteins.

The importance of accurate treatment of *,+ conformational
properties is emphasized by the observation of the presence of .
helical structures in MD simulations of peptides using a variety of
force fields.177 In these studies, which typically involved helical
peptides, sampling of . helical conformations was observed. Care-
ful analysis of the relative energies of the -R vs. . helical con-
formations in a variety of force fields revealed the energy differ-
ence to be smaller than that predicted by high level QM
calculations. This suggested that, because the energy of the .
conformation was not sufficiently high compared to the --helical
conformation, additional sampling of . was occurring. Verifica-
tion of this was performed by applying the CMAP approach where,
by reproducing the . to --helical QM energy difference in a
modified CHARMM22 force field, sampling of the .-helical con-
formation was significantly diminished. Although these results do
not eliminate the possibility of .-helical conformations in pro-
teins,178 they emphasize the influence a force field can have on the
results of MD simulations, and that when novel results are ob-
tained from empirical force field studies, underlying influences
associated with the force field being applied should be considered.

The improvements attained with the 2D dihedral CMAP cor-
rection emphasize the need for continuous optimization of empir-
ical force fields as technical developments allow for more rigorous
comparison of simulation results with experimental data. A good
example is a recent study in which free energies of solvation of
model compounds representative of protein side chains were cal-
culated for the AMBER, CHARMM, and OPLS-AA force fields
and compared with experiment,49 similar studies have been re-
ported elsewhere.179–181 In the study all three force fields were
shown to satisfactorily reproduce the experimental data, with
OPLS showing better overall agreement, while CHARMM and
AMBER were similar. However, in certain cases all of the force
fields performed poorly. Such results, while somewhat limited
because of the use of atom truncation methods vs. the more
commonly used PME methods for the treatment of long-range
electrostatics, indicate that improvements in the nonbond param-
eters of all the force fields are possible.

Multiple adjustments of the original AMBER Cornell et al
force field,17 referred to as PARM94, have occurred. The first
significant adjustment, yielding PARM96, included optimization
of the dihedral parameters associated with *,+ to yield better
agreement with the alanine dipeptide results of Beachy et al.142

However, in a subsequent version, PARM98, the *,+ related
torsions were set back to the PARM94 values. Additional adjust-
ments of the *,+ torsions were again undertaken targeting QM
data for both the alanine dipeptide and tetraapeptide,142 yielding
PARM99. More recently, additional modifications have been per-
formed motivated by a tendency for the AMBER force field to
favor --helical conformations. These include modifications to the
*,+ related dihedral parameters and to the charge distribution for
the entire protein force field. In two studies, only the dihedral
parameters were changed to better treat conformational sampling
in peptide simulations,182,183 with the dihedral force constants

being set to zero in one case.182 In a third study, the partial atomic
charges for AMBER were redetermined via RESP fits to B3LYP/
cc-pVTZ//HF/6-31G* QM data.184 This was followed by readjust-
ment of the *,+ related dihedral parameters to reproduce QM maps
of the alanine and glycine dipeptide maps obtained at the MP2/
cc-pVTZ//HF/6-31G* level with a dielectric constant of 4. The use
of a dielectric constant of 4 was designed to mimic that of the
protein interior. The resulting model yielded improved reproduc-
tion of conformational properties for selected peptides using a GB
model185 of solvation. However, it should be noted that changing
the charge distribution of a protein force field should be accom-
panied by reevaluation of the internal portion of the force field, as
the electrostatic term effects geometries, vibrational spectra, and
conformational energies to varying degrees. In addition, care must
be taken with the use of individual charge sets for the main chain
atoms of the different amino acids (i.e., different partial atomic
charges on the mainchain atoms for the different sidechains) as the
difference could lead to poor *,+ distributions, although the au-
thors of the Duan et al. study suggest that it may lead to improved
sequence-dependent properties.184 Overall, these changes in the
AMBER force field represent positive steps, potentially leading to
improved models. Clearly, additional tests on these models via
MD simulations of larger proteins using explicit representations of
the condensed phase environment are required for their further
validation. Also, care must be taken to avoid the creation of a
number of AMBER “variant” force fields, which may lead to
problems in comparing results from different studies as well as
make it difficult to perform further enhancements of the AMBER
force field in a coherent fashion.

Extended or united atom force fields dominated the early pro-
tein force fields. Examples include OPLS/UA,88 the early AMBER
force fields,35 GROMOS87 and 96186 and CHARMM
PARAM19.187 The GROMOS united atom force field186 is still
widely used in MD simulations that include explicit solvent rep-
resentations. Recent enhancements in GROMOS96 have included
condensed phase tests188 and more careful optimization of LJ
parameters to reproduce experimental condensed phase proper-
ties.189 Of the other united atom force fields, their use is now
primarily for simulations on long time scales via the use of implicit
solvent models, with the majority of these studies being based on
PARAM19. Several continuum solvation models have been devel-
oped for use with PARAM19, including EEF1,118 ACE,190 several
GB models,113,191,192 and a buried surface area model by Caflisch
and coworders.193 It should be noted that these and other implicit
models can and have been used with all-atom force fields. A
summary of recent applications of both united and all-atom protein
force fields combined with implicit solvent models has been pre-
sented,103 showing the success of this approach in understanding
protein structure–function relationships especially in the area of
protein folding.

Additional force fields used for protein simulations include
MMFF,194 CEDAR,195,196 ENCAD,197,198 and CVFF,21 among
others. A more comprehensive list may be found it the recent
review by Ponder and Case.52 MMFF was designed to treat a wide
range of pharmaceutically relevant molecules as well as biomol-
ecules. Although care was taken in the development of the non-
bonded portion in the force field, including use of the buffered
14–7 VDW potential, the omission of condensed phase data from
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the optimization appears to limit the quality of the model for
protein simulations. However, the wide range of molecules that
MMFF can treat make it useful for ligand–protein studies (see
below), where it may be desirable to restrain portions of the protein
to overcome limitations in the protein portion of the force field. A
similar situation exists with CVFF. In the end, when selecting a
force field it is important to determine that the force field is
appropriate for the problem under study and, during the study
itself, to evaluate the results to make certain that they are not being
unduly biased by the force field.

Knowledge-Based Protein Force Fields

Although not the primary focus of this review, knowledge-based or
free energy force fields should be discussed due to their role in
studies of protein folding. Knowledge-based force fields are pa-
rameterized to directly yield free energies versus force fields
defined in eq. (1) that yield potential energies, with the thermody-
namic quantities obtain from statistical mechanics.199 Of the
knowledge-based force fields, one of the first was ECEPP by
Scheraga and coworkers.200,201 This force field also represents one
of the earliest force fields for any biological macromolecule, and
has continued to be enhanced over time.202,203 More recently, the
UNRES potential has been presented,204 and it too is undergoing
continual enhancements.205,206 In addition, a variety of other
knowledge-based potentials are available,207–211 although it
should be emphasized that this is not a comprehensive list (see the
review by Russ and Ranganathan for more information212). In
addition, it is difficult to judge the quality of these different models
as many are used primarily by the groups that developed them,
although the CASP competitions may be considered one measure
of their quality.213 It should be noted that as the number of proteins
for which 3D structures are available increases, the quality and
utility of these types of force fields is anticipated to increase.

Nucleic Acid Force Fields

The polyanionic nature of oligonucleotides has made them a
challenge for empirical force field-based calculations,214 requiring
more accurate treatment of the balance between the oligonucleoti-
de’s conformational energies and their interactions with the aque-
ous solvent environment. Early simulations of DNA included
making the phosphate moieties neutral,215,216 the inclusion of
“solvated” sodiums as counterions and the use of a distance
dependent dielectric constant to mimic the solvent environ-
ment.217,218 Numerous attempts to perform simulations of DNA
and RNA with an explicit representation of solvent using the early
AMBER,219 CHARMM nucleic acid,220 or GROMOS221 force
fields found mixed success. Significant progress in DNA simula-
tions occurred in the mid 1990s when several groups performed
successful simulations of DNA in solution.222–224 These successes
were initially attributed to the use of the Ewald method,4 typically
in the particle-mesh Ewald (PME) formalism,129 for the treatment
of long-range electrostatic interactions; however, it was subse-
quently shown that use of adequate lengths for truncation of
electrostatic interactions combined with the appropriate smoothing
functions123 led to stable MD simulations of DNA.225–227 In

addition, improvements in second-generation force fields made
significant contributions to the ability to perform stable simula-
tions of oligonucleotides.

Second-generation forces fields for nucleic acids included the
Cornell et al AMBER (PARM94)17 and CHARMM all-atom163

force fields. Both of these models produced stable simulations, as
listed in the previous paragraph, but both had systematic problems.
With CHARMM22 there was a strong tendency towards A form
duplex DNA structures, even in low salt conditions.228 This prob-
lem lead to a full reoptimization of the CHARMM all-atom nucleic
acid force field, yielding CHARMM27.48,229 With AMBER
PARM94 problems associated sugar puckering and helical repeat
lead to modification of selected torsion parameters,230 yielding the
PARM98/PARM99 force field. In addition to the modified second-
generation CHARMM and AMBER nucleic acid force fields,
another carefully optimized force field from Bristol-Myers-Squibb
(BMS) has been published.231

Optimization of the parameters in these three force fields in-
volved some notable differences. AMBER parameters, in general,
are based on small molecules from which internal parameters are
obtained via reproduction of geometries, vibrational spectra, and
conformational energies. These parameters are then applied di-
rectly to larger model compounds representative of nucleic acids,
with additional adjustments of selected dihedral parameters per-
formed as required when the direct transfer of parameters from
small compounds is insufficient (e.g., for the conformational en-
ergies of dimethylphosphate). Partial atomic charges were ob-
tained via RESP fitting for the nucleotides in a B-form conforma-
tion.160 These were then applied directly to the nucleic acids, with
subsequent additional optimization of torsion parameters per-
formed to yield PARM98/99.230 CHARMM27 is similarly based
on the optimization of the internal parameters to reproduce small
molecule geometries, vibrations, and conformational energies,
while charges are based on the supramolecule approach discussed
above. In addition, final optimization of selected dihedral param-
eters was based, in part, on the reproduction of conformational
energies of larger model compounds representative of nucleic
acids, including nucleosides.144,147–149 LJ parameters for both
AMBER and CHARMM27 were transferred from the protein force
fields, although the LJ parameters for selected base atoms in
CHARMM27 were optimized to reproduce heats of sublimation of
bases. The BMS force field is based on AMBER RESP charges,
CHARMM-based internal parameters, and CHARMm/Quanta
(i.e., commercial CHARMM, Accelrys Inc.) internal parameters
for the sugar and phosphodiester backbone.232 Importantly, all
three force fields included additional optimization of selected
dihedral parameters based on the reproduction in MD simulations
of experimental structural data for DNA and RNA duplexes. With
AMBER, the inclusion of such data involved the changes associ-
ated with the PARM98 revision, while such target data was used
extensively with the CHARMM27 and BMS force fields. In the
case of BMS the final optimization was based primarily on the
reproduction of structural properties from surveys of the NDB150

along with proper treatment of the equilibrium between A and B
form DNA as a function of water activity.233,234 With
CHARMM27, the final optimization simultaneously targeted sur-
vey data from the NDB and the conformational energies of the
larger model compounds representative of nucleic acids. The si-
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multaneous reproduction of both the survey and model compound
data assures that the final dihedral parameters are not inappropri-
ately biased by one type of target data. Despite notable differences
in the approach to parameter development, all three force fields
yield reasonable properties in simulations of DNA in solution.
However, it should be emphasized that the differences in param-
eter optimization protocols may lead to differences in the atomic
details obtained from the MD simulations. Accordingly, atomic
detail results obtained from MD simulations with the force fields
should be judged with respect to possible biases in the individual
force fields.

All three of these force fields have been subjected to a variety
of tests on duplex DNA.135,235 They all yield stable structures of
DNA in solution and, importantly, with the exception of the
AMBER PARM98/99 model, yield B form structures in high water
activity conditions (e.g., low salt) and A form structures in low
water activity conditions (e.g., high salt or ethanol). It should be
noted that the AMBER PARM94 force field did reproduce the
expected structural properties as a function of water activity; in
certain cases it may be preferable to use this model over PARM98/
99. As presented in detail elsewhere,135 these force fields repro-
duce a variety of experimental observables, including changes in
helicoidal parameters as a function of sequence. Individually,
certain biases are observed in the individual force fields. With
CHARMM27, there is a tendency for the minor groove to be wider
than experimentally observed values, although an ongoing debate
concerning the role of counterions on minor groove width indi-
cates that further studies are required.236–240 AMBER tends to
underestimate helical twist and favor roll over twist, whereas the
BMS force fields yields B-DNA solution structures that are pos-
sibly to close to the canonical B form of DNA. This bias with BMS
may be due to the dominant role of crystal survey results as target
data during the optimization of the force field. It should be reiter-
ated that all three force fields work well with canonical DNA.

An area that has not received a significant amount of study is
the use of these force fields with noncanonical structures. Consid-
ering the significant structural distortions that DNA must undergo
to perform its biological function,241,242 knowledge of the accu-
racy of empirical force fields in treating noncanonical structures is
essential. Some progress towards this has been undertaken in
potential of mean force studies of base flipping in DNA, where the
CHARMM27 force field as been shown to yield near-quantitative
agreement with NMR imino proton exchange experiments243 and
in an MD study where CHARMM was shown to accurately treat
an adenine bulge.244 Clearly, more systematic studies in this area
are required.

RNA, which samples a significant number of noncanonical
structures, has also been the subject of MD studies. These calcu-
lations have been performed with the AMBER and CHARMM22
and CHARMM27 force fields. To date, MD-based studies of both
canonical223,245 and noncanonical246–249 structures have been re-
ported, although systematic tests and comparisons of the force
fields have not yet been performed.

Over the last several years modifications of the AMBER and
CHARMM models have been proposed. One study used high level
QM calculations on Watson–Crick and Hoogsteen base pairs at the
HF/cc-pVTZ(-f)//LMP2/cc-pVTZ(-f) to optimize off-diagonal LJ
terms for the base hetereoatoms.250 This led to improved agree-

ment between the AMBER and CHARMM22 force fields and the
presented QM interaction energies, notably improving the overes-
timation of the WC interaction energies by AMBER. Although
leading to improved agreement with the limited target data used in
that study, application of such adjustments in MD simulations
must be tested to ensure that the balance of the WC interactions
with base stacking and base–solvent interactions will not be altered
from that in the original implementations of the force fields. In a
second study, new internal parameters have been presented for the
AMBER force field that better reproduce the out-of-plane geom-
etries of the base amino groups.251 The optimization was per-
formed based on QM gas phase geometries of Cyt, Ade, and Gua.
However, as pointed out by the authors, when those amino groups
are hydrogen bonded they become planar due to delocalization of
the lone pair on the nitrogen leading to decreased pyramidaliza-
tion. A similar phenomenon occurs with the peptide bond.252

Because the change in the pyramidalization is associated with a
change in electronic structure due to hydrogen bonding and, in
condensed phase simulations the amino groups are always in-
volved in hydrogen bond interactions, it may actually be more
appropriate to optimize parameters for the planar bases while
taking care to ensure that the out-of-plane wags of the amino
groups are properly treated, as was done in both AMBER17 and
CHARMM2748 to allow for the appropriate out-of-plane distor-
tions that occur in MD simulations. In general, when making ad
hoc alterations to a force field it is important to test the changes in
a variety of simulation conditions to ensure that they do indeed
lead to an overall improvement in the force field rather than just
leading to better agreement for a limited set of target data.

Other force fields are available for nucleic acid simulations,
although they have not been widely used. These include GRO-
MOS,253 MMFF, CVFF,21 and OPLS.254 In all cases the necessary
parameters for the nucleic acids are present; however, it appears
that subtle adjustments of the force fields required for accurate
simulations of nucleic acids, as discussed above, have yet to be
performed for these models. Another alternative is FLEX, imple-
mented in the program JUMNA, which may be considered a
knowledge-based force field for nucleic acids.255,256 JUMNA in-
cludes an internal coordinate representation of DNA, treating
solvation with a sigmoidal dielectric screening term rather than
with an explicit solvent model. Accordingly, JUMNA allows for
conformational studies on oligonucleotides that are significantly
larger than that currently accessible to all-atom, explicit solvent
representations.

Lipid Force Fields

Lipids represent a significant challenge for empirical force fields,
while empirical force field calculations offer great potential in
understanding the atomic details of lipid structure and dynamics.
Both of these points are due to the liquid–crystalline nature of lipid
bilayers in biological membranes at physiological temperatures.
This fluid-like nature leads to the absence of high-resolution ex-
perimental structures of the lipid bilayers, although crystal struc-
tures of certain lipids at lower temperatures (i.e., not in the fluid
phase) are available.257 Accordingly, experimental data on biolog-
ically relevant lipid bilayers is limited to low-resolution data, such
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as density profiles along the bilayer normal obtained from X-ray
and neutron scattering, and various NMR observables such as
order parameters and T1 relaxation times.258,259 This leads to the
problem of a lack of macromolecular structural target data for
careful optimization of lipid force fields while the accuracy re-
quirements of a lipid force field may be considered to be higher
then those for other biomolecules, due to the central role of force
fields in understanding the atomic details of biological membranes.

Current lipid force fields include both all-atom and united or
extended-atom models. Although the majority of protein and nu-
cleic acid simulations are now performed with all-atom models,
the relatively large number of aliphatic hydrogens in lipids leads to
significant computational gains when a united-atom model is em-
ployed. Accordingly, a large number of MD studies with lipids are
performed using united atom models. Currently, several united-
atom lipid force fields are in use. These include the GROMOS
force field, which has been optimized to reproduce condensed
phase properties of alkanes.260 A variant of the GROMOS force
field has been presented261,262 that includes reoptimized LJ pa-
rameters based on long chain alkanes and 5-decene and use of the
Ryckaert and Bellmans dihedral potential.263 Similarly, a united
atom force field by Berger et al.264 included optimization of the LJ
parameters to reproduce condensed phase properties of pentade-
cane. This force field has recently been used in a series of simu-
lations of 150 ns or more, showing that long simulations leading to
stable bilayer structures are feasible when the appropriate treat-
ment of electrostatics, for example, PME, is performed.265 The
essential role of the treatment of long-range electrostatics via
Ewald methods, vs. atom-truncation, for lipid simulations has been
discussed.266 Another united atom force field by Smondyrev and
Berkowitz267 was based on CHARMM22 force field internal terms
and charges,165 supplemented with internal parameters from AM-
BER, followed by optimization of selected terms based on lipid-
related model compounds. Application of this force field to DPPC
yielded an area per head group and aliphatic chain order parame-
ters in good agreement with experiment. Thus, there are a variety
of united-atom force fields for lipids available, although the GRO-
MOS96 force field appears to be the most commonly used model.
Although such a collection of force fields gives users a choice of
potentials, it complicates comparison of results from different
studies. Clearly, careful comparison of these varied force fields is
required to better understand their utility.

The dominant all-atom model in use is that associated with
CHARMM, which treats a variety of phospholipids, including
mono268 and polyunsaturated lipids.269 The history of the lipid
parameter development with CHARMM is a good example of how
empirical force fields can be continually improved as additional
experimental data becomes available, improvements in algorithms
are made and, importantly, increases in computer time allow for
more rigorous testing of force fields. The original CHARMM force
field (CHARMM22) was published in 1996.165 Optimization of
the force field targeting small molecules in the gas phase was
performed without atom truncation, while condensed phase tests
employed atom truncation. This force field was used in a number
of studies, including lipids,270 a micelle,271 and protein–lipid com-
plexes,272 reproducing a variety of experimental observables.
However, application of that force field in crystal simulations of
glycerolphosphorylcholine and cyclopentylphosphorylcholine

yielded densities that were too high.273 This, combined with lim-
itations in the nucleic acid force field, led to reoptimization in the
phosphate parameters, yielding improved agreement with experi-
ment. In addition, it was shown that the heat of vaporization of
long chain alkanes was significantly overestimated and, based on
high level QM calculations,274 that the energy of the gauche
conformation of butane was to high. Application of new LJ pa-
rameters for the alkanes43 combined with lowering the gauche
energy of butane along with the improved model for the phosphate
moiety yielded the CHARMM27 force field that reproduces a
variety of experimental observables for a dipalmitoylphophatidyl-
choline (DPPC) bilayer. An interesting observation during this
stage of the optimization was that improvements in the LJ param-
eters for the aliphatic chains lead to improvements in the fraction
gauche conformation even though the internal energy of the
gauche vs. trans conformers based on butane was similar. This
result emphasizes the relationship between the nonbond and inter-
nal portions of a force field and how proper optimization of both
aspects are important for accurate treatment of atomic detail events
is MD simulations. Further optimization of the hydrocarbon chains
of the CHARMM27 lipid force field are ongoing (R. Pastor, D.
Tobias and A.D. MacKerell, Jr., work in progress).

In addition to united and all-atom models are course-grained
lipid models designed for simulations of extended lipid bilayers,
unilamellar vesicles, and so on.275,276 In such models the different
moieties comprising the lipids are treated as extended spheres, as
is water, with, in some cases, multiple waters being treated as a
single sphere. For example, the head group in DPPC is modeled as
one sphere each for the choline, phosphate, and glycerol moieties
while each fatty acid chain includes a sphere for the ester linkage
and four spheres for the aliphatic region. Interactions between
particles involve LJ type interactions supplemented with electro-
static interactions between the head group moieties. These models
allow for simulations of very large systems, corresponding to 1
million or more atoms, by significantly decreasing the actual
number of particles, for extended time periods, such as microsec-
onds, via the use of an integration time step of 50 fs. Although
attractive for investigating large scale (both time and size!) phe-
nomena in lipids, the majority of the atomic detail is lost. Further,
it is necessary to carefully adjust the parameters for each system
under study to ensure the behavior of the model in simulations is
adequately representative of the experimental regimen.

Carbohydrates

Carbohydrates represent a unique challenge for empirical force
fields for several reasons. With monosaccharides the conforma-
tional properties are dominated by a subtle balance of inter- and
intramolecular hydrogen bonding involving the numerous hy-
droxyl groups and water. In addition, there are a significant num-
ber of different types of monosaccharides of biological interest.
For example, the Pneumococcal 23-valent,277 Meningococcal
4-valent,278 Salmonella typhi Vi,279 and Hib280 vaccines contain a
total of 24 monosaccharide/substituent combinations. These often
contain functional groups that are important for molecular recog-
nition, such as the acetamido, amino, sulfate, and uronic acid
groups. At the polysaccharide level the complexity is further
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amplified due to the presence of a variety of chemical connectivi-
ties in the form of glycosyl bonds compared to the repeating
peptide bonds or phophodiester linkages in proteins and oligonu-
cleotides, respectively. For example, there are 1,1; 1,2; 1,3; 1,4;
1,6; 2,2; and so on types of glycosyl linkages with each case
having - and 1 anomers; a subset of the types of linkages in
selected disaccharides is shown in Figure 4. Finally, the presence
of multiple oxygens (or nitrogens) in carbohydrates allows for the
delocalization of oxygen lone pairs into antibonding, /*, orbitals
(i.e., hyperconjugation), which influences the conformational en-
ergies of the carbohydrates. These delocalizations are referred to as
the gauche, anomeric, and exoanomeric effects.281,282 Such com-
plexity has lead to the development of a number of force fields for
subsets of carbohydrates as described below; however, a compre-
hensive force field for this class of biomolecules is lacking.

A number of carbohydrate force fields have been developed for
gas phase calculations. Recently, a MM4 force field for carbohy-
drates was reported.283–286 This force field treats simple alcohols
and ethers as well as a number of hexoses, although no tests on
disaccharides have been preformed and, because the model was
developed for the gas phase, its applicability for condensed phase
simulations is unclear. Another example of a carbohydrate force
field that is based on gas phase energies is that developed for the
commercial CHARMm package232 based on a variety of QM data.
A variant of the commercial CHARMm force field, CHEAT, was
designed to yield conformational properties that correspond to free
energies in aqueous solution from gas phase calculations (i.e., a
knowledge-based force field, see above).287,288 In this model hy-
droxyl groups are treated as extended atoms, and the model was
developed with the goal of obtaining reasonable estimates of
polysaccharide conformations. Such gas phase-based force fields
are useful for understanding general conformational properties of
carbohydrates, although atomically detailed insights into the role
of water, and their application in heterogeneous biomolecular
simulations, may be expected to be minimal.

Several force fields associated with the program CHARMM are
available that have been designed for use with an explicit solvent

representation. Brady and coworkers have developed models for
hexopyranose sugars based on small molecule geometric and vi-
brational data and on --D-glucopyranose.289 However, this force
field yields incorrect conformational properties for the exocyclic
hydroxyl,290 glycosyl bonds are not treated, and the model is only
limited to hydroxyl substituents. More recently, this model has
been reoptimized, in part to be consistent with the CHARMM22
protein and CHARMM27 nucleic acid/lipid force fields and to
yield improved conformational properties for the exocyclic hy-
droxyl group.291,292 Other CHARMM-compatible force fields in-
clude one by Reiling et al.293 that was based on a series of QM
calculations on carbohydrate analogs and parameters for sulfates
and sulfamates substitutents for use with 1-D-glucose.294

A variety of carbohydrate simulations have employed the
GROMOS force field,221,295 which, as stated above, is a united
atom model that is appropriate for simulations in aqueous solution.
Variations include work by Ott and Meyer296 that include correc-
tions to more accurately treat the exo-anomeric effect. An all-atom
revision has been proposed that accessed missing parameters from
CHARMM and adjusted the LJ parameters based on condensed
phase simulations.288 Overall, these force fields yield reasonable
results for monosaccharides, although studies on disaccharides
have not been reported.

A significant number of carbohydrate force fields are available
that are related to the AMBER force field. An early example
extended AMBER to treat the acetamido group of GlcNAc as well
as the glycosyl linkage.297 A recent model has been developed
based on vibrational fitting to glucose, although it is known to give
the wrong anomer ratio in both solution and vacuum.298 Glennon
and Merz developed an hexapyronse force field in which semiem-
pirical calculations were used to assign partial atomic charges to
each atom (vs. all secondary hydroxyls having the same
charge).299,300 Woods and coworkers have developed the GLY-
CAM force field301 again by considering the unique partial atomic
charges for the individual atoms, including ensemble averaging in
the charge determination302,303 as well as additional optimization
of internal parameters. Recent updates of the GLYCAM force field
have included use of a 1,4 scale factor of 1.0304 vs. 1/1.2 common
to the remainder of the AMBER force fields and a general carbo-
hydrate model that avoids anomeric carbon specific terms is avail-
able (R. Woods, personal communication). Such a change in the
1,4 factor may complicate studies of heterogeneous biomolecular
systems. Another AMBER variant, AMB99C investigated 1–4
linkages in maltose and cyclodextrins by adjusting the appropriate
parameters to reproduce QM conformational energies.305,306 Koll-
man and coworkers produced a carbohydrate model that involved
adjustment of torsional parameters for O–C–O–C and O–C–O–H
connectivities based on small molecule QM data.307 This model
was shown to yield the correct ratio of the - vs. 1 anomers of
glucose; however, the model currently is limited to monosaccha-
rides and does not include moieties relevant to carbohydrates
involved in molecular recognition. Other specialized AMBER
variants include a united atom model that treats solvent via the
Generalized Born/Solvent Accessible Area approach308 and the
SPACIBA force field that is optimized to produce accurate vibra-
tional spectra via the use of Urey–Bradley–Shimanouchi spectro-
scopic terms that incorporate the effects of vibrational anharmo-
nicity.309 Again, these models appear to be rather specialized, such

Figure 4. Example glycosyl linkages found in polysaccharides. Hy-
droxyl groups have been omitted for clarity.
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that there applicability to a wide range of carbohydrates is ques-
tionable.

Carbohydrate models have also been developed based on extend-
ing the OPLS force field.19 This work,310 combined with recent
refinements,311 may represent the best force field available for simple
carbohydrates. These efforts have been based on reoptimization of
selected torsional parameters using QM conformational energies of
D-glucopyranose, D-galactopyranose, D-mannopyranose, methyl D-
glucopyranoside, and methyl D-mannopyranoside, along with empha-
sis on the properties of the exocyclic hydroxyl group.310 However,
these models deviate from standard OPLS by scaling the 1–5 and 1–6
electrostatic interactions to allow for treatment of vicinal hydroxyl
groups. In addition, parameters for the various sugar derivatives and
protein linkages for monosaccharides involved in molecular recogni-
tion are not available.

As is evident from the above discussion, a significant amount of
effort has gone into the optimization of force fields for carbohy-
drates. However, no consensus force field for the wide range of
monosaccharides, functional groups, and glycosyl linkages in
polysaccharides is available. Given the essential role of carbohy-
drates in a wide variety of biological processes as well as problems
associated with the experimental determination of carbohydrate
structures,312 this omission represents a significant gap in empir-
ical force fields that is hindering our understanding the structure–
activity relationships of carbohydrates.

Heterogeneous Biomolecular Systems

To date, the majority of empirical force field studies of biomol-
ecules have involved “homogeneous” systems that included one
type of biomolecule (e.g., protein or duplex DNA) along with, in
some cases, solvent and ions. However, increased computational
resources along with an ever increasing number of experimental
structures for heterogeneous biomolecular systems that are central
to biological processes require the application of empirical force
fields to more complex systems. An important part of these appli-
cations will be the use of the proper force fields for the systems
under study.

Biological phenomena at the atomic level are dominated by
nonbonded interactions between molecules. Accordingly, when
applying empirical force field-based methods to study heteroge-
neous biomolecular systems it is essential to have the nonbonded
interactions between different aspects of the force field be properly
balanced. To obtain such a balance it is generally necessary to use
parameters that are part of the same force field; mixing of different
force fields is ill advised, as the balance of nonbond interactions
will be lost. Loss of such a balance can, for example, lead to an
overestimation of protein–DNA interactions vs. protein–water and
DNA–water interactions as well as possible leading to imbalances
associated with DNA solvation being to favorable compared to
protein solvation. Thus, when considering simulations of hetero-
geneous systems the range of molecules a force field covers must
be taken into account. This consideration also applies to studies of
small molecules interacting with biomolecules (e.g., drug–protein
complexes, see below).

Currently, the most extensive biomolecular force fields are the
CHARMM22 and CHARMM27 force fields. These include pro-
teins, nucleic acids, lipids and, although limited, carbohydrates. To
date, a number of successful studies have been performed on
DNA–protein, DNA–lipid, and protein–lipid complexes using this
model. The lack of availability of parameters for glycosyl linkages
from carbohydrates to proteins or lipids currently hinders the
application of CHARMM to glycoproteins and glycolipids. With
AMBER studies on protein–nucleic acid and protein–carbohydrate
systems would be appropriate. Care must be taken with the latter
in cases where changes have been made in the treatment of
nonbond parameters and 1,4 interactions (see above). It should be
noted that the components of lipids are available in AMBER,
although recent MD studies of lipids have not been reported. OPLS
has been primarily used for simulations of proteins, although a
significant amount of work with carbohydrates has been reported
(see above), making this model appropriate for protein–carbohy-
drate systems. Care must be taken due to the recent introduction of
1,5 and 1,6 scaling factors in the carbohydrate model,310,311 which
may lead to compatibility problems with the proteins. With the
GLYCAM and OPLS carbohydrate variants, the change of the
form of the potential energy function via alterations of the scaling
factors improves the ability of the models to treat carbohydrates,
but may lead to problems when applied to heterogeneous systems.
Also, the components for lipid simulations using OPLS are avail-
able, although no OPLS lipid simulations have been reported. The
GROMOS united atom force fields is suited for protein–lipid and
protein–carbohydrate simulations, while the lack of applications to
nucleic acids makes its use in protein–nucleic acid studies less
appropriate. Again, for the majority of these force fields parame-
ters are often available for biomolecules to which the respective
force fields are not typically applied. If an extension of any force
fields is made to biomolecules not previously studied using that
model, the simulator is advised to apply the respective force field
to well-studied homogeneous model systems of the biomolecule
being investigated to gauge the accuracy of the force field prior to
applying it in more complex, heterogeneous systems.

Force Field Transferability: Application to
Drug-Like Molecules

One of the major applications of empirical force fields is in the
area of drug design and development.313 For such applications it is
necessary to have the relevant parameters for the drug-like mole-
cules of interest. Given the huge dimensionality of chemical space,
having the appropriate parameters for a wide range of compounds
is not a trivial problem. Several force fields have addressed this
problem directly. These include MMFF,24,194 CVFF,21,314 the
commercial CHARMm force field,232 CFF,315 COMPASS,316 the
MM2/MM3/MM4 series,16,283,317 UFF,27 Dreiding,26 the Tripos
force field (Tripos, Inc.), among others. Typically, these force
fields have been designed primarily to reproduce internal geome-
tries, vibrations, and conformational energies, often sacrificing the
quality of the nonbond interactions,318 which are of obvious im-
portance for accurately treating ligand–protein interactions. Excep-
tions are MMFF and COMPASS where nonbond parameters have
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been investigated at a reasonable level of detail. In addition, the
quality of these “wide-coverage” force fields in treating biomol-
ecules is generally poorer than the more specialized biomolecular
force fields. However, their wide coverage of chemical space often
makes the use of these force fields desirable for screening of large
databases of compounds. To account for limitations in these force
fields in the treatment of, for example, proteins, it may be appro-
priate to restrain all of the protein except those residues in the
vicinity of the ligand-binding site during minimization or MD
studies of ligand–protein complexes.

Concerning the specialized biomolecular force fields, their
transferability to drug-like molecules varies. For example, AM-
BER historically has been developed with transferability in
mind, with recent efforts focused on more automated methods
of parameter assignment.319,320 CHARMM force fields have
focused on more refined parameters, thereby limiting transfer-
ability. However, the modular approach used for the partial
atomic charges (i.e., the sum of the atomic charges on moieties
such as rings, carboxylates, etc., are integers) allows for the
available parameters for the large collection of model com-
pounds parameterized to date45,321 to readily be combined into
drug-like molecules, as previously described.36 Work towards a
more comprehensive, transferable force field that is compatible
with the CHARMM biomolecular force fields is ongoing (B.R.
Brooks and A.D. MacKerell, Jr., work in progress). A similar
situation exists with OPLS where a wide variety of molecules
that are often included as fragments in drug-like molecules have
been explicitly parametrized.40,322,323 Thus, with the biomolec-
ular force fields more effort is typically required to set up and
parameterize novel molecules; however, when performing cal-
culations that require higher accuracy (e.g., free energy pertur-
bation calculations for lead structure optimization), such efforts
are typically warranted.

A study by Halgren nicely summarizes the extent of transfer-
ability of force fields.194 In that study, a variety of force fields were
tested for their ability to reproduce experimental data on the
conformational energies for a variety of small compounds. While,
based on that test set of compounds, some of the force fields
worked well overall, in all cases there where catastrophic failures
where the energetic ordering of conformers for a compound was
incorrect. This emphasizes the need to carefully test a force field
when it is being applied to molecules for which parameters were
not explicitly developed. Such tests can be as simple a checking
the relative energies of selected conformers against QM data
(HF/6-31G* is accessible to most drug-like molecules and yields
conformational energies that are representative for most mole-
cules194) or be more detailed, involving careful checking of non-
bonded interactions with the environment or condensed-phase
simulations to determine experimentally accessible thermody-
namic values. Again, the degree of accuracy required for a study
dictates that amount of parameter testing and optimization required
for novel molecules that are part of the study.

Summary

The quality of empirical force fields for biomolecules has in-
creased to the level that the agreement with a variety of experi-

mental data is often within the accuracy of the experimental
method. This has allowed for empirical force field-based MD
simulations on biomolecules to gain general acceptance in the
scientific community. This acceptance, although by no means
complete, is important as it allows for a more detailed picture of
structure–function relationships in biomolecules, beyond those
typically accessible to experiments, to be obtained. However, it is
important for this confidence in force field-based methods to
continue to develop, leading to wider acceptance of this important
technique. This, in large part, is the responsibility of the individ-
uals involved in force field development, who must continue to
improve the accuracy of force fields in both the present form of the
potential energy function as well as in extended forms, such as the
2D dihedral grid correction map method recently applied to pro-
teins and, importantly, the inclusion of electronic polarizability in
the potential energy function. Other advances will be based on
algorithmic improvements that facilitate conformational sampling
of biomolecules, thereby allowing for more rigorous comparisons
with experiments.

Finally, the actual application of empirical force fields to a wide
variety of biological systems will have a major impact on increas-
ing the confidence in results from force field methods by the
general scientific community. If the applications are performed in
a carefully designed manner, using the appropriate methods and
force fields, it can be anticipated that the quality of the agreement
with the experiment will be enhanced, and that the atomic detail
insights obtained from those simulations that are not currently
accessible to experiment will stand the test of time. Such successes
will ensure the growth of empirical force field methods in the
biological sciences. It is hoped that the present review facilitates
this growth.
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