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Abstract

We describe the Multiscale Modeling Tools for Structural Biology (MMTSB) Tool Set (http://mmtsb.scripps.edu/software/mmtsbToolSet.
html), which is a novel set of utilities and programming libraries that provide new enhanced sampling and multiscale modeling techniques
for the simulation of proteins and nucleic acids. The tool set interfaces with the existing molecular modeling packages CHARMM and
Amber for classical all-atom simulations, and with MONSSTER for lattice-based low-resolution conformational sampling. In addition, it
adds new functionality for the integration and translation between both levels of detail. The replica exchange method is implemented to
allow enhanced sampling of both the all-atom and low-resolution models. The tool set aims at applications in structural biology that involve
protein or nucleic acid structure prediction, refinement, and/or extended conformational sampling. With structure prediction applications
in mind, the tool set also implements a facility that allows the control and application of modeling tasks on a large set of conformations in
what we have termed ensemble computing. Ensemble computing encompasses loosely coupled, parallel computation on high-end parallel
computers, clustered computational grids and desktop grid environments.

This paper describes the design and implementation of the MMTSB Tool Set and illustrates its utility with three typical examples—scoring
of a set of predicted protein conformations in order to identify the most native-like structures, ab initio folding of peptides in implicit
solvent with the replica exchange method, and the prediction of a missing fragment in a larger protein structure.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The success of computational methodologies in chemistry
that have been developed over the last four decades is re-
flected in a multitude of academic and commercial programs
available today. CHARMM[1], Amber [2], and Gaussian
[3] are typical examples of this development, and enjoy wide
usage in both academia and industry. Most of these programs
that have emerged from this period are highly functional,
well optimized, and sufficiently integrated within their in-
tended range of applications. However, because of a high
level of complexity, proprietary command interfaces and in-
put/output formats these programs often tend to be inflexible
when extensions and/or interoperability with other existing
programs are needed. While this is a common problem in the
integration of heterogeneous legacy software components
[4], such issues have become especially apparent in the im-
plementation of new enhanced sampling techniques applied
to the conformational sampling of biopolymers. These novel
simulation protocols combine existing methods in order to
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improve conformational sampling efficiency for molecular
modeling and dynamics applications. Generalized ensemble
sampling techniques, for example, involve parallel simula-
tions of a system of interest with different weight factors
coupled by a Monte Carlo simulation protocol[5–7]. Vari-
ants of this sampling scheme are being used increasingly
in the study of long time scale phenomena such as protein
folding [8–13]. These methods could be implemented in the
form of separate, new programs or by modifying existing
simulation packages. In a more practical implementation,
however, existing programs could be used to run each of the
simulations while an external interface layer is utilized to
couple and control the individual simulations and facilitates
the enhanced sampling methodology. This approach would
allow greater flexibility in using the same enhanced sam-
pling method with different simulation programs, and avoid
difficulties in modifying existing large software packages
directly.

Another way to improve conformational sampling is
through multiscale modeling techniques. The computational
modeling of biological macromolecules commonly revolves
around structure representations in atomic or near-atomic
detail, with a classical description of physical interactions.
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Such models have been quite successful in complementing
experimental data with structural, dynamic, and energetic
information, but involve substantial computational resources
for larger systems, or when long time scales have to be con-
sidered. In particular, studies of protein folding, structure
prediction applications, or the formation and interaction of
supramolecular assemblies become prohibitively expensive
with models at atomic detail. Alternatively, coarser molec-
ular representations with few virtual particles, often also
projected onto lattices, have yielded meaningful results in
such cases[14]. Unfortunately, the reduced level of detail
often cannot provide the same accuracy as all-atom models.
For example, it is quite feasible to generate native topolo-
gies from folding simulations using simple lattice models;
however, it is much more difficult to actually discern na-
tive or near-native conformations from other, non-native
conformations that are also generated with the same model
[15]. In such cases, one may instead reconstruct all-atom
structures from reduced representations[16], and use these
more detailed models to regain a higher level of accuracy
with an all-atom scoring function that can then distinguish
native from non-native conformations[17,18]. This idea
represents the core of more general multiscale modeling ap-
proaches; lower resolution models are used to extend sam-
pling to longer time scales or larger system sizes, whereas
higher-resolution models provide the energetic accuracy.
While the structure prediction example above describes a
single pass of low-resolution sampling followed by the use
of all-atom models for improved accuracy, multiscale mod-
eling can also be done in a continuous fashion, for example
through Monte Carlo type simulations that repeatedly move
between low- and high-resolution models for extended
sampling on an energy landscape that is closely coupled to
the interactions of the high-resolution model. The imple-
mentation of multiscale modeling methods faces problems
similar to these seen in the implementation of enhanced
sampling methods, but usually involves the combination of
multiple programs rather than a single simulation program.
All-atom modeling of biological macromolecules is possi-
ble with a number of standard molecular modeling packages
such as CHARMM or Amber, but these programs usually
do not fully support low-resolution models and especially
lattice-based representations. On the other hand, simulation
programs for low-resolution models, such as the lattice
simulation program MONSSTER[19], do not usually allow
all-atom modeling. Both types of applications are fairly
complex, so that the option of simply merging them is not
very attractive. As for the implementation of enhanced sam-
pling methods, a better solution would be to wrap simulation
programs for all-atom and low-resolution models through
a common interface layer and provide translation routines
between both models as the basis for building multiscale
applications.

In this paper, we describe a new set of utilities and
programming libraries for the implementation of compu-
tationally distributed enhanced and multiscale sampling

methods based on existing simulation programs. This
package, called Multiscale Modeling Tools for Structural
Biology (MMTSB) Tool Set (available athttp://mmtsb.
scripps.edu/software/mmtsbToolSet.html), is an effort
within the NIH Research Resource for Multiscale Modeling
Tools for Structural Biology and follows the implementa-
tion strategy outlined above by integrating the existing pro-
grams through an interface layer while providing missing
functionality as necessary. Interpreted scripting languages
such as Perl or Python are particularly suitable for building
interface layers since they combine ease of use and porta-
bility with a high level of functionality for addressing the
complex system-oriented but computationally less intensive
tasks[20]. Similar, scripting-language based designs have
been used successfully in other related applications such
as the molecular modeling tool kit (MMTK)[21] or the
Bioperl toolkit [22].

The idea of the MMTSB Tool Set is not just to provide
a set of user programs for certain enhanced and multi-
scale sampling modeling tasks, but also a programming
workbench, which provides the framework for the devel-
opment of new applications that require the interplay of
multiple simulation packages. It focuses on applications
in the area of protein structure prediction, protein folding,
and large-scale model building and refinement of proteins
and nucleic acids for which enhanced and multiscale sam-
pling techniques are particularly useful. As a subset of
its functionalities, the tool set also provides a common
user interface to all-atom modeling via CHARMM1 [1] or
Amber1 [2] and reduced-model lattice modeling via MON-
SSTER[19]. Furthermore, the tool set incorporates a num-
ber of support functions that are motivated by multiscale
modeling applications, but are certainly useful for other
purposes as well. They include algorithms for translating
quickly and accurately between low- and high-resolution
models and methods for the organization, manipulation,
and evaluation of large sets of conformations for a given
protein, in what may be referred to as ensemble comput-
ing. Ensemble computing applications greatly benefit from
parallel execution since they are inherently parallel in na-
ture and typically require relatively little communication.
The tool set provides basic parallel platform support im-
plemented on the scripting language level, which makes it
largely platform-independent and does not require specific
communication libraries.

In the following, we will first describe the architecture
and components of the MMTSB Tool Set in more detail. We
will then continue by providing examples of how the tool
set may be used for typical enhanced and multiscale sam-
pling applications in protein structure prediction, structure
evaluation, and structure refinement examples. We conclude
by discussing how this architecture may be extended to new
tasks and applications.

1 We note that the tool set is supported with versions of CHARMM
beyond c29b and Amber version 7.
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2. Software description

2.1. Architecture

Common modern scripting languages that would be ap-
propriate for building complex applications are Perl and
Python. We decided to use Perl as the (still) more widely
used scripting language in order to minimize portability is-
sues and to facilitate user extensions as much as possible.
As depicted inFig. 1, the architecture of the MMTSB Tool
Set consists of a collection of object-oriented classes, called
packages in Perl, that implement all of the core functionali-
ties. These packages are used by a number of executable user
programs, which mainly parse command line arguments and
call the appropriate functions to build specific applications.
In addition to the simulation programs CHARMM, Amber,
and MONSSTER, a few other compiled-language programs
are also included as part of the tool set, and wrapped through
Perl, for computationally more demanding tasks that can-
not be done efficiently in Perl alone. This program design
maximizes flexibility and reusability. The packages alone
can be used as a programming library for a variety of tasks
that may go well beyond the intended applications of the
MMTSB Tool Set. For example, one may use the interface
to CHARMM to take advantage of Perl’s advanced scripting
capabilities for building complex modeling applications that
require additional functionality and go beyond the capabil-
ities of CHARMM’s own scripting language. On the other
hand, the command-line oriented user-level utilities in the
MMTSB Tool Set are intended to cover a wide range of ap-
plications with a special focus on enhanced and multiscale
sampling protocols. Furthermore, since these user-level util-
ities represent little more than a user interface to the pack-
age routines, they can easily be customized to address new
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Fig. 1. Representative view of the MMTSB Tool Set architecture. External programs CHARMM, Amber, and MONSSTER are shown in blue, Perl
packages in magenta, and Perl user utilities in green.

Table 1
MMTSB Tool Set Perl packages implementing the core functionality and
serving as a programming library

Package name Functionality

Molecule All-atom representation of molecule objects
CHARMM Interface to CHARMM molecular modeling

program
Amber Interface to Amber molecular modeling

program
Analyze Structural analysis of molecular conformations
Cluster Clustering of molecular conformations
SICHO Reduced, side chain based representation of

molecules
Sequence Amino acid sequences and secondary

structure information
MONSSTER Interface to MONSSTER lattice simulation

program
SimData, Ensemble Ensemble computing
JobClient, JobServer Parallel execution for ensemble computing

applications
ReXClient, ReXServer Replica exchange simulations
GenUtil General utility functions
Server, Client General server/client implementation

types of problems either based on the existing package rou-
tines or by adding new functionality. The user utilities could
also be replaced by a different type of user interface or in-
tegrated into other types of applications without significant
additional effort.

2.2. Components

In this section, we provide an overview over the various
components of the MMTSB Tool Set. The packages and
user programs are listed inTables 1 and 2, respectively. This
paper is meant to give an overview of the MMTSB Tool Set
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Table 2
Main MMTSB Tool Set command-line oriented user utilities

Utility Functionality

enerCHARMM.pl, enerAmber.pl All-atom energy evaluation with CHARMM/Amber
minCHARMM.pl, minAmber.pl All-atom minimization with CHARMM/Amber
mdCHARMM.pl, mdAmber.pl All-atom molecular dynamics with CHARMM/Amber
convpdb.pl Convert and manipulate PDB files
complete.pl Complete missing atoms in protein structures
mutate.pl Mutate residues in protein structures

rms.pl, lsqfit.pl, contact.pl, rgyr.pl, dihed.pl, qscore.pl Analysis of protein conformations
cluster.pl Clustering of a set of conformations

latticesim.pl Lattice-based low-resolution simulations with MONSSTER
genchain.pl Generation of low-resolution representation from all-atom models
rebuild.pl Reconstruction of all-atom models from low-resolution representations

ensmin.pl, enseval.pl, enslatsim.pl, ensrun.pl, enscluster.pl Ensemble computing applications
checkin.pl Create ensemble from external sources
getprop.pl, setprop.pl Read/set ensemble property values
showcluster.pl, bestcluster.pl Cluster-based analysis of ensemble data

aarex.pl, aarexAmber.pl All-atom replica exchange simulations with CHARMM/Amber
latrex.pl Lattice model replica exchange simulations with MONSSTER
rexinfo.pl Extract replica exchange data

hlamc.pl, hlamcrex.pl Hybrid multiscale lattice/all-atom Monte Carlo sampling protocol

predominantly from a user’s perspective. The following de-
scription will focus on user programs rather than the under-
lying packages and support programs; however, some exam-
ples on how to use the packages as a library will be given as
well. We will describe the basic functions for all-atom and
low-resolution modeling and then continue with enhanced
sampling and multiscale modeling applications.

3. All-atom modeling

The central part of the all-atom modeling components
revolves around interfaces to the molecular mechanics
packages CHARMM[1] and Amber[2]. In this respect the
MMTSB Tool Set may be viewed as an alternative user
interface to CHARMM and Amber for certain standard
modeling tasks. The tool set utilities are meant to provide
access to these powerful programs without requiring the
user to go through the learning curve of understanding the
specific command and data input and output protocols of
each program. The functionalities that are provided through
the MMTSB Tool Set focus on energy evaluations, min-
imization, and molecular dynamics runs with the utilities
enerCHARMM.pl, minCHARMM.pl, mdCHARMM.pl, en-
erAmber.pl, minAmber.pl, and mdAmber.pl, respectively.
Input structures are expected to be in standard PDB format
with necessary name and format conversions done auto-
matically and transparently for standard protein structures.
A special utility, convpdb.pl, is also available for manual
PDB format translations as well as a variety of manipula-
tions that may involve changing residue numbering, editing
chain identifiers, translating coordinates, and subselecting
or merging structure fragments. All of the all-atom model-

ing utilities assume reasonable default values for a number
of parameters, which can be altered by the user through
additional command line options if necessary. For example,
minCHARMM.plwithout any further options will perform
a short minimization in vacuum on a structure given as
input and write the minimized structure to standard output.
Parameters can then be altered to include implicit solvent
[23,24], change the cutoff for non-bonded interactions, or
the number of minimization steps, among other options. As
another example,mdCHARMM.plwith default parameters
will automatically recognize explicit water molecules in
the input file in PDB format and setup and run a standard
molecular dynamics protocol with periodic boundary con-
ditions [25] and particle mesh Ewald electrostatics[26].
The same default usage will use implicit solvent based
on a generalized Born formalism[27] instead, if explicit
solvent molecules are not found. While many options are
available to support a number of commonly used features
in CHARMM and Amber, the MMTSB Tool Set does not
aim to provide a complete interface to the full level of
functionality of either one of these very complex molecular
modeling programs. However, for modeling tasks that go
beyond the capabilities of the provided utilities, the tool
set may still be used to facilitate the preparation of input
structures and setup procedures.

While the function of the MMTSB Tool Set as an in-
terface to CHARMM and Amber may be very useful in
itself, it should be emphasized again at this point that the
real strength of the tool set lies in the combination of these
basic all-atom modeling functions with other simulation
techniques that are not available in CHARMM or Amber.
These are in particular enhanced sampling facilities based
on replica exchange methodology, multiscale modeling
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applications in a combination with low-resolution sam-
pling, and ensemble computing techniques that allow the
efficient application of a given modeling task to a large set
of structures via distributed parallelism. Further aspects of
this functionality will be described in more detail below.

4. Low-resolution modeling

Low-resolution modeling within the MMTSB Tool Set is
based on the MONSSTER program[19]. MONSSTER im-
plements the SICHO (side CHain only) model where each
amino acid in a polypeptide chain is represented by a single
virtual particle located at the side chain center of mass and
projected onto a cubic lattice with 1.45 Å grid spacing[28].
Such a model is particularly well suited for constant temper-
ature or simulated annealing type Monte Carlo simulations
based on an energy function that is governed by physical
and knowledge-based terms. As with CHARMM and Am-
ber for all-atom modeling tasks, the tool set can also be used
as a user interface for running low-resolution simulations
with MONSSTER. The central utility for running either con-
stant temperature or simulated annealing lattice simulations
is latticesim.pl. Other supporting utilities are available for
access to MONSSTER output files as well as the genera-
tion of sequence files, lattice chains, and other input files
that are needed when running the MONSSTER program in a
more manual fashion. Through the MMTSB Tool Set, lattice
simulations can also benefit from enhanced sampling tech-
niques and ensemble computing facilities. The latter is par-
ticularly useful for structure prediction applications where a
very large number of structures are often generated with the
fast lattice sampling protocol.

5. Translation between all-atom and low-resolution
models

Both levels of detail, all-atom and low-resolution repre-
sentations, are brought together by MMTSB functions that
allow the generation of lattice chains from all-atom struc-
tures and the reconstruction of all-atom structures from
lattice chains. Such mapping functions are essential for a
multiscale modeling strategy and should preserve initial
structures as much as possible through complete translation
cycles. The utility for the generation of low-resolution mod-
els from all-atom structures isgenchain.pl. It is primarily
intended for generating lattice models suitable for MON-
SSTER, but it can also be used to generate related types
of reduced models with or without additional particles at
C� positions, either in continuous space or projected onto
cubic lattices with different grid spacings.

The reduction from all-atom models to low-resolution rep-
resentations is fairly simple and straightforward. The recon-
struction of all-atom models from low-resolution models,
on the other hand, is more challenging since lost informa-

tion has to be recreated by other means. Several methods are
available for the reconstruction of complete all-atom mod-
els at moderate levels of accuracy based on C� backbones
[29–32]. In this case the backbone needs to be completed
and side chains are typically added from a rotamer library
and then annealed in order to resolve steric clashes. If the
low-resolution model is side chain center based, one can use
a slightly different reconstruction algorithm[16]. Because
the side chain center is known, the reconstructed structures
are generally quite close (<1 Å) to the original structure
from which a low-resolution model was generated. The re-
construction program is part of the MMTSB Tool Set and
available through therebuild.pl utility. The rebuilding pro-
cedure can handle on- as well as off-lattice low-resolution
models and is able to take advantage of C� coordinates,
if present, to build more accurate peptide backbones than
would be possible with side chain centers alone.

As a first example how a combination of low-resolution
and all-atom representations can be useful for common
modeling tasks, one may consider the computational mu-
tation of residues in a given protein structure. Off-lattice
low-resolution models based on side chain centers and C�

coordinates can be used to preserve the backbone and the
center of the original side chain while allowing the recon-
struction of the mutated amino acid onto the same backbone
at the same location. This may be done through a combi-
nation of thegenchain.pland rebuild.pl utilities, or more
conveniently withmutate.pl, which is intended specifically
for such computational mutation tasks.

6. Ensemble computing

Certain applications such as structure prediction, docking
experiments, or estimates of conformational or interaction
energies often involve relatively large ensembles of differ-
ent conformations for a system of interest. Such ensembles
may be assembled from simulation snapshots, the endpoints
of simulated annealing runs as with the low-resolution
lattice model described above, or by other means of confor-
mational sampling. In many cases the ensemble structures
are then evaluated and compared in one way or another,
typically with the goal of extracting the most favorable en-
semble members as the structures with the highest stability
and, consequently, highest biological relevance. It may also
be desirable to manipulate all of the ensemble structures in
the same fashion in order to improve the evaluation pro-
cess, for example by regularizing all of the conformations
through force field based minimization.

The MMTSB Tool Set provides convenient facilities for
handling structural ensembles in this manner. It allows the
organization of ensemble members in the form of a sim-
ple database, along with associated properties such as en-
ergetic terms or structural quantities, and includes utilities
for the application of the same operation on a whole en-
semble of structures, in what we call ensemble computing.
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Such computations are highly amenable to parallel comput-
ing environments, and the MMTSB Tool Set can take ad-
vantage of common architectures from distributed or shared
memory parallel clusters to loosely coupled sets of hetero-
geneous machines through the use of a standard TCP/IP
socket-based networking protocol[33]. With applications
such as protein structure prediction in mind, special empha-
sis is put on tools that allow the efficient minimization and
evaluation of energies based on CHARMM for an ensemble
of structures. These functions are available with the utili-
ties ensmin.plandenseval.pl, respectively. A more general
utility, ensrun.pl, allows any command or command script
to be run on a set of structures in an ensemble either for
calculating a property of interest or generating new sets of
structures. The ensemble facility in the MMTSB Tool Set is
designed to maintain multiple conformations for each mem-
ber of an ensemble. Such sets of conformations may be de-
rived through minimization, short molecular dynamics runs
or other means of structure manipulation and they are iden-
tified through user-defined tags. This expands the ensemble
idea borrowed from statistical mechanics to a collection of
structures where each member is represented not just by one
but by any number of related conformations. In this organi-
zational scheme, multiple ensembles are only needed for en-
tirely different sets of conformations or conformations that
belong to a different system altogether. In these cases, mul-
tiple ensembles would be distinguished simply by keeping
the data files in different subdirectories.

The internal organization of ensembles within the
MMTSB Tool Set is illustrated inFig. 2. A relatively sim-
ple, text file-based database setup was chosen to maintain
a level of transparency and openness that allows easy ac-
cess to stored conformations and properties with external
programs. However, such a design comes at the expense of
efficiency for very large structural ensembles. While signif-
icant limitations have not become obvious for applications

ensdir

ens.cfg

tag1.prop.dat

tag2.prop.dat

0

1 1

2 2

3

4

tag1.pdb

tag2.pdb

Fig. 2. Directory and file organization used for ensemble computing.

involving up to 50,000 ensemble members, better perfor-
mance for larger ensembles could be obtained through a
more efficient database design. The use of database engines
would be an option if performance improvements turn out
to be necessary in the future.

There are four ways for generating structure ensembles
within the MMTSB Tool Set. The first option, aimed at
structure prediction applications, generates ensembles from
low-resolution lattice simulations withenslatsim.pl. This
utility is an ensemble version oflatticesim.pltaking advan-
tage of parallel execution and allowing the automatic recon-
struction of all-atom models from the final lattice models. In
the second option one can generate ensembles from replica
exchange simulations, which will be explained in more de-
tail in the following section. For all other purposes, there
is a general utilitycheckin.plfor creating new ensembles
or adding one or more structures to an existing ensemble
from external sources. Finally, as a fourth option, because
of the simple database structure one may simply create an
ensemble directory structure and copy files manually. This
is not recommended, but it may be more practical in combi-
nation with other computational tools if integration within
the MMTSB Tool Set is not possible or desirable.

Each set of structures in an ensemble has an associated
property data file, which is queried most conveniently with
the utility getprop.pl, but could also be easily read with
other external programs, if necessary. The properties stored
in this file are identified with arbitrary property tags and may
be comprised of energy terms calculated withenseval.pl,
structural properties calculated withcalcprop.pl, or other
properties resulting from external programs that are run with
ensrun.plover the whole ensemble. It is also possible to enter
single values up to whole data series in a manual fashion
with setprop.pl.

While some of the tools for ensemble computing are
specifically aimed at multiscale modeling and structure pre-
diction applications, the more general utilities make this kind
of infrastructure accessible for other applications as well. It
was our intention with this design that the MMTSB Tool
Set will become useful for a variety of ensemble comput-
ing tasks that involve the organization and manipulation of
large sets of molecular conformations in new contexts.

7. Replica exchange simulations

An exploration of the potential energy landscape for a
system of interest, usually with the goal of finding low-lying
regions, is the central theme of most molecular modeling
applications. Sampling efficiency with standard simulation
techniques such as molecular dynamics or Monte Carlo at a
given temperature is governed by the distribution and height
of energetic barriers, or ruggedness, and the slope towards
the energy minimum in the landscape, both of which deter-
mine the kinetic behavior of the system. Barrier crossings
are facilitated at higher temperatures, but a single simulation
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at an elevated temperature would sample an altered free
energy surface due to temperature-dependent entropic con-
tributions. As a dramatic example, a single simulation of
a protein at a temperature above its folding temperature
would eventually result in protein unfolding, since unfolded
conformations have a lower free energy than conformations
in the folded, native basin at such temperatures.

Enhanced sampling schemes have been introduced to ad-
dress this problem, so that it becomes possible to overcome
energetic barriers more easily while maintaining sampling
on the relevant free energy surface at room temperature. In
one such method, called replica exchange or parallel tem-
pering, multiple simulations or replicas of the same system
are run in parallel at different temperatures[12,34]. The in-
dividual simulations are then coupled through Monte Carlo
based exchanges of simulation temperatures between repli-
cas at periodic intervals. In this scheme each simulation vis-
its a range from low to high temperatures so that sampling
is provided at the temperature of interest, while traversing
conformational space more easily at elevated temperatures.

More formally, temperatures are exchanged between two
replicas,i and j, with temperaturesTi, Tj and energiesEi,
Ej according to the canonical Metropolis criterion for the
exchange probabilityp:

p =
{

1 for∆ ≤ 0

exp(−∆) for∆ > 0

where

∆ =
(

1

kTi
− 1

kTj

)
(Ej − Ei)

Applied to one or more pairs of simulations after short
runs of molecular dynamics or Monte Carlo simulations at
constant temperature, this protocol can improve the sampling
efficiency by orders of magnitude depending on the type and
size of the system. Replica exchange simulations have been
used with great success for the ab initio folding of peptides
in explicit solvent from first principles[8–10,35]. In other
applications, shorter replica exchange runs may be used for
improved local structure refinement or simply for ranking
a set of structures according to relative free energy, since
the most favorable conformations will populate the lowest
temperatures. While replica exchange simulations based on
the exchange of temperatures have been most popular, other
forms of biases can also be used to reweight sampling prob-
abilities[6,7]. For example, umbrella type biasing potentials
could be used to restrain the radius of gyration or the frac-
tion of native contacts to different values in each replica and,
in a more general case, multiple biases can be combined
in two-dimensional or even higher-dimensional replica ex-
change simulations[36].

In the MMTSB Tool Set, replica exchange sampling is
available to achieve enhanced sampling of all-atom mod-
els with CHARMM or Amber, as well as enhanced lat-
tice based sampling of low-resolution representations with

MONSSTER. In each case, the simulation control and ex-
change algorithm are implemented on the scripting language
level. In fact, most of the same code is reused in these cases
and could be combined easily with other applications in or-
der to add replica exchange sampling. Replica exchange sim-
ulations are particularly suitable for parallel environments
due to their inherent parallelism and low cost of communi-
cation, since communication occurs only infrequently at ex-
change events. As for the ensemble computing functions, the
MMTSB Tool Set supports most parallel architectures and
environments through its own platform independent com-
munication protocol.

The main tools for running replica exchange simulations
in the MMTSB Tool Set arelatrex.plfor lattice-based replica
exchange simulations using MONSSTER, andaarex.pland
aarexAmber.plfor all-atom replica exchange simulations us-
ing CHARMM and Amber, respectively. During and after a
replica exchange run simulation data can be queried in many
ways with therexinfo.pl utility. Replica exchange simula-
tions run through the MMTSB Tool Set involve a special
directory structure for organizing and storing the conforma-
tions from each of the individual replicas, but an option is
available to automatically build an ensemble data structure
from the lowest temperature conformations for further pro-
cessing with the ensemble computing tools.

8. Advanced multiscale sampling methods

The utilities for lattice-based low-resolution sampling,
for all-atom sampling, and for the translation between
low-resolution and all-atom models can be combined to
implement a basic multiscale modeling protocol. This is
provided with the utilitypredict.pl, which integrates these
steps into a single pass from low-resolution sampling to
all-atom based scoring for structure prediction applications.
More complex multiscale modeling protocols, however,

Short lattice simulation (MC)

All atom reconstruction

All atom minimization

All atom energy evaluation

accept/reject
conformation

Monte
Carlo
Move

Metropolis
Criterion

Fig. 3. Hybrid lattice/all-atom simulation scheme I.
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Short lattice simulation (MC)

All atom molecular dynamics
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Monte
Carlo
Move

Metropolis
Criterion

accept/reject
conformation

Fig. 4. Hybrid lattice/all-atom simulation scheme II.

may involve the continuous transition between low and
high-resolution models to take advantage of efficient sam-
pling with the low-resolution model and an accurate energy
function with all-atom models. While any protocol could be
setup as a custom application using the MMTSB Tool Set
packages or programming library, we have implemented
two advanced modes of multiscale modeling simulations
that appear to be particularly useful. Both of these sampling
protocols follow the idea of sampling conformations on the
all-atom energy landscape using the lattice model, and are
implemented inhlamc.pl. In the first mode, illustrated in
Fig. 3, a Monte Carlo simulation is run with moves that
consist of a very short constant temperature lattice simula-
tion followed by all-atom reconstruction and short all-atom
minimization before the final all-atom energy is used in the
Metropolis criteria. The second mode (Fig. 4) couples lattice
and all-atom models more tightly by running short all-atom
molecular dynamics simulations that follow conformational
moves from lattice simulation through side chain center
restraints. Again, the final energy is used in a Monte Carlo
simulation to either accept and continue from favorable
conformations or reject unfavorable conformations and try
another move. Instead of a single Monte Carlo run, either
mode can alternatively be coupled with replica exchange
sampling at different temperatures withhlamcrex.pl. Other
similar multiscale sampling algorithms are certainly pos-
sible, and the application utilities provided may serve as
starting points for implementing new sampling schemes.
While more testing and tuning of these novel methods is
needed, we believe their availability through the MMTSB
Tool Set will spark further interest.

9. Structure analysis functions

A number of utilities in the MMTSB Tool Set can be used
for limited structure analysis tasks. They include functions
such as clustering or the calculation of root mean square de-
viations and optimal superposition between two conforma-

tions, calculation of the radius of gyration, the fraction of
native contacts, or standard peptide chain dihedral anglesφ,
ψ, ω, andχ1. In ensemble computing applications, most of
these structural properties can be calculated in parallel for a
whole set of ensemble structures with the utilitycalcprop.pl
in order to facilitate analysis of ensemble structures.

The clustering functions are particularly helpful for struc-
ture prediction tasks. Clustering is done based on pairwise
distances, measured either as coordinate or dihedral angle
root mean square deviations independent of any single ref-
erence structure. The results are sets of structures with sim-
ilar conformations according to the given criteria. It is then
possible to compare energy scores between entire clusters as
the average score from all of their respective members and
obtain statistically more reliable quantities such as energy
scores from a cluster of similar conformations rather than
single conformations. This type of analysis is facilitated for
ensembles with theenscluster.plandbestcluster.plutilities
for the generation of clusters and cluster-based analysis, re-
spectively.

10. Applications

Having provided an overview of the different components
of the MMTSB Tool Set, we now present a few typical appli-
cations that illustrate the use of the tool set—scoring of pre-
viously generated protein conformations with the ensemble
computing facility, folding of peptides via replica exchange
simulations, and the prediction of a missing fragment in the
context of a known structure.

10.1. Scoring of protein conformations

The energy based scoring of protein conformations is a
common task in structure prediction and docking protocols.
In these cases the scoring function is typically applied to a
large number of conformations generated with a given sam-
pling method, with the goal of finding the most favorable,
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and presumably most native-like, structures. The ensemble
computing facilities within the MMTSB Tool Set are partic-
ularly well suited for such a task. The following example il-
lustrates the use of the MMTSB Tool Set for scoring predic-
tions for the structure of a fusagenic sperm protein from H.
fulgens[37]. Predictions of this protein were submitted dur-
ing CASP4 (target id: T0125), the fourth community-wide
assessment of structure prediction methods. For the ex-
ample shown here, we downloaded all of the predictions
for the entire length of the sequence submitted as the first
model by participating prediction groups from the CASP
web site. This yielded a total of 90 structure predictions.

11. Generation of an ensemble data structure from
input files

As the first step, an ensemble is generated from the set of
predicted structures by using thecheckin.plutility:

The file names of the predictions submitted to CASP fol-
low the format T0125∗.pdb for this target and the structures
are given an identifying tagcasp in the newly created en-
semble. Now that the predicted structures are available in
ensemble format, ensemble computing tools can be used for
further processing.

12. Preprocessing of input structures

Depending on how the input structures were generated, it
is often a good idea to regularize and minimize the structures

before calculating energy scores. Many structure predictions
do not contain a complete set of atoms. Often, hydrogen
atoms are missing and some predictions may consist only of
C� coordinates. Therefore, as the first step we will run the
complete.plutility in order to generate complete, all-atom
structures for all of the predictions. Since we want to apply
this command to all of the structures in the ensemble we use
ensrun.plas follows:

This command runs thecomplete.pl utility for each
structure in the ensemble under thecasp tag, the only
set of structures we have so far, and generates a new set

from the output of complete.plwith the tag caspcom-
plete. The complete.plutility automatically uses different
protocols depending on how much of the structural in-
formation is missing. If only C� or backbone coordinates
are present, the SCWRL utility[30,38] is used to add
side chains from a rotamer library, while missing hydro-
gens are added with the HBUILD facility in CHARMM
[1].

The next step is a short minimization run with a distance
dependent dielectric function. This can be done very conve-
niently with theensmin.plutility which uses CHARMM to
do the actual minimization:

This command minimizes all of the completed structures
stored under thecaspcompletetag and creates a new set
of structures with themin tag. In this example 100 steps
of minimization are requested with a distance dependent
dielectric function andε = 4. Depending on the size of the

system, minimization runs can take some time to complete
and it is advantageous to use parallel computing facilities
to speed up the calculation. In this example four CPUs are
used in a shared memory environment.

13. Evaluation of scoring function

Finally, we can evaluate a scoring function for the mini-
mized structures. The ensemble computing tool for energy
evaluation,enseval.pl, is used as follows:

Here, we are using a scoring function that includes im-
plicit solvation based on a generalized Born formalism[27],
in this case the GBMV method[39,40], as implemented in
CHARMM as the default when GB is requested. Again, four
CPUs are used in parallel to speed up the calculation. In this
case the total energy of the entire molecular mechanics force
field, including all bonded and non-bonded interactions as
well as the electrostatic solvation term, are used as the

scoring function and assigned to a new property called
score.
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14. Analysis of results

Once theenseval.plrun is complete the scores are avail-
able and can be queried withgetprop.pl. A sorted list of all
values is obtained easily with the following command:

In this command the property namescoreand structure
tagminare used to identify the data set. Such a result may be
sufficient for many applications, but often it is advantageous
to form clusters of input structures based on mutual similar-
ity and then compare average scores over cluster members
to identify the lowest scoring clusters rather than individual
structures. This requires a few additional steps and will be
illustrated in more detail in the loop prediction example.

Since the native conformation of this structure is available
from the protein data bank[41] (PDB code: 1GAK) it is
possible to calculate root mean square deviations (RMSD)
between all of the predictions and the native structure. This
can be done conveniently withcalcprop.pl, which calculates
a number of structural properties, including RMSD:

Both, the energy score and C� RMSD values, can now be
extracted with

The results are visualized inFig. 5 as a plot of energy
scores versus root mean square deviations from the native
structure. It can be seen that the energy scores decrease
on average towards more native-like conformations, and the
scoring function could be indeed used to identify the most
native like conformations, with a C� RMSD of about 4 Å
in this example. In a recent study, we have applied similar
protocols to all of the predictions submitted to CASP4 and
generally found good correlation between all-atom energy
scores that include a realistic treatment of solvation and
proximity of predicted conformations to the experimentally
obtained native structure[17].

14.1. Folding of peptides with replica exchange
simulations

The MMTSB Tool Set adds enhanced sampling capabili-
ties to existing simulation programs such as CHARMM or

Amber through the replica exchange simulation methodol-
ogy. Replica exchange simulations can speed up sampling
in conventional molecular dynamics simulations by orders
of magnitude[8,12]. Such a gain in sampling efficiency
is particularly attractive for the challenging problem of
folding peptides and proteins through simulation at atomic
detail. Ab initio folding at atomic detail has been simulated
directly with constant temperature molecular dynamics
simulations only for very small peptides, where folding
times are on the order of hundreds of nanoseconds and
considerable computational resources were used[42,43].
When replica exchange simulations are employed, ab initio
folding of peptides can be achieved for larger systems and
on much shorter timescales[9,10,35]. Further reduction of

computational expense is possible if an implicit solvent
description is used instead of explicit solvent molecules
[44–47]. It then becomes possible to fold�-helices and
�-hairpins in a matter of days with moderate computa-
tional resources. As examples we will consider the peptide
(AAQAA) 3, which is known experimentally to be predom-
inantly �-helical [48], and the designed tryptophan zipper
hairpin SWTWENGKWTWK [49], for which an experi-
mental structure is available from NMR. A replica exchange
simulation with the MMTSB Tool Set starting from a com-
pletely extended conformation for either peptide is run from
the command line as follows:
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Fig. 5. All-atom energy scoring function versus root mean square deviation (RMSD) of C� coordinates with respect to native structure (PDB code: 1GAK).
The all-atom energy function based on the CHARMM22 force field[56] includes implicit solvent contributions from the GBMV implementation of the
generalized Born formalism[39,40]. Data points with energies more positive than−5000 kcal/mol and more than 20 Å RMSD are omitted for clarity.

In these simulations we are using the GBMV implemen-
tation[39,40]of the generalized Born formalism with mod-
ified van der Waals radii based on the set of radii developed
by Nina et al.[50] and a hydrophobic term that depends lin-
early on the solvent accessible surface area with a scaling
factor of 0.012 kcal/mol/Å2. We also use recently developed
map-basedφ/ψ backbone dihedral cross terms, in order to
adjust the balance between�-helical and extended confor-
mations from the original force field[51]. Both peptides
are built with blocked termini. The eight temperature win-
dows are exponentially spaced from 270 to 550 K resulting
in temperature exchange probabilities between replica pairs
from 16 to 19% for the hairpin and from 16 to 25% for the
helical system. The simulations are each carried out over a
total of 10 ns simulation time for each replica (10,000 cycles
and 500 molecular dynamics steps (step size: 2 fs) between
exchanges), which takes about 1 week on eight nodes of a
PC-based cluster.

The data from replica exchange simulations can be ex-
amined with therexinfo.pl utility and conformations may
be analyzed withrms.pl and genseq.pl. Particularly useful
is an option to rank replicas according to the average tem-
peratures they have visited over a period of simulation time.
This information can be used to identify the most favorable
conformations from the replica with the lowest average tem-
peratures.Tables 3 and 4summarize the results from simu-
lations for (AAQAA)3 and the hairpin system, respectively.
The data shows that the most favorable final conformations
at the lowest temperatures agree well with experimental ob-
servations. Replica 7 in the simulation of (AAQAA)3, with
the lowest average temperature at the end of the simulation,

is indeed�-helical (see alsoFig. 6). On the other hand, the
most favorable replica in the hairpin simulation, replica 1,
clearly exhibits a hairpin-like secondary structure and de-
viates by only 1.4 Å RMSD from the experimentally de-
termined structure. However, in this example we also find
other structures at higher temperatures that contain partial
�-helices. The excellent agreement of the simulated hairpin
from replica 1 is also manifest inFig. 6, where the final con-
formation is compared with the structural ensemble from
NMR measurements[49].

It is instructive to examine the evolution of RMSD and
temperature for replica 7 in the (AAQAA)3 simulation
(Fig. 7a) and replica 1 in the hairpin simulation (Fig. 7b).

Table 3
Results from replica exchange simulations of (AAQAA)3

Temperature rank and percentage of time spent at the lowest tempera-
ture, 270 K, are averaged over the last 1000 cycles (9000–10,000). The
secondary structure is obtained from the final conformation after 10,000
cycles using the DSSP program[55].
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Table 4
Results from replica exchange simulations of the harpin sequence SWTWENGKWTWK

Temperature rank and percentage of time spent at the lowest temperature, 270 K, are averaged over the last 1000 cycles (9000–10,000). The secondary
structure is obtained from the final conformation after 10,000 cycles using the DSSP program[55]. C� coordinate root mean square deviations are
calculated with respect to the native structure obtained from NMR experiments (PDB code 1LE1, model 1)[49].

In both cases, native-like structures are reached relatively
quickly (after 5 and 2.5 ns, respectively). The variations
in temperature suggest extensive conformational sampling
at higher temperatures during the beginning of the simu-
lation until a favorable, native-like conformation is found
and then the temperature remains at the lower tempera-
tures. For the hairpin, the step-wise reduction of RMSD
with respect to the native structure can be correlated with
the temperature fluctuations. Major transitions at 1.8 and
2.5 ns appear to occur during or shortly after brief periods
of elevated temperatures around 500 K when the crossing
of conformational barriers is greatly facilitated.

This example is meant to demonstrate how the MMTSB
Tool Set can be used to take advantage of the replica ex-

Fig. 6. Final conformations from lowest temperature replicas after 10,000 cycles (10 ns) in simulations of (AAQAA)3 (left) and the hairpin sequence
SWTWENGKWTWK (right). The hairpin structure is compared with the first 10 NMR models from PDB entry 1LE1[49].

change enhanced sampling methods in combination with
modeling packages such as CHARMM and Amber. We hope
that it will enable further studies in peptide folding, protein
folding, and protein structure refinement.

14.2. Prediction of missing fragments in proteins

The large number of solved experimental protein struc-
tures provides the basis for finding at least partial templates
in most structure prediction applications based on sequence
homology or fold recognition. This reduces typical structure
prediction efforts from entirelyde novopredictions to the
still challenging task of modeling unknown structural frag-
ments in the context of a template. In principle, a multiscale
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Fig. 7. (a) Time series of simulation temperature and number of�-helical i, i + 4 hydrogen bonds in replica 7 over the course of the simulation of
(AAQAA) 3. (b) Time series of simulation temperature and C� RMSD with respect to the native structure (PDB: 1LE1) in replica 1 over the course of
the simulation of SWTWENGKWTWK.

modeling protocol as outlined above is followed, but with
the restraint of keeping the template structure fixed and the
possibility to limit calculations to the vicinity of a modeling
region and reduce computational expenses. How this can be
done efficiently with the MMTSB Tool Set will be illustrated
in the following example, which demonstrates the modeling
of residues 48 to 55 in the zinc endopeptidase astacin from
European fresh water crayfish (PDB code: 1IAB). The na-
tive structure is a mixed�/�-fold, and the missing 8-residue
piece constitutes a long, solvent-exposed loop between two
�-sheet segments.

15. Generation of model conformations from lattice
simulations

In the first step, conformations for the missing fragment
are generated using lattice-based low-resolution sampling.
As input for this step only a sequence file and the tem-
plate structure are needed. The sequence file contains
the entire sequence for the template as well as the miss-
ing part. It also provides secondary structure information
that is trivially obtained for the template and can be pre-
dicted for the missing part with good reliability using a
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variety of different secondary structure prediction meth-
ods.

In this example, we will use replica exchange simulations
with the lattice model for enhanced sampling. The command
would then look like this:

This command will run 1000 cycles of replica exchange
on eight CPUs, which takes on the order of 1 h on modern
clusters. With this command, all-atom structures are auto-
matically rebuilt from the lowest-temperature replicas and
stored as an ensemble for further processing. Since the−l
option is given with the residues of the unknown structural
fragment, only these residues are sampled freely, while the
rest of the structure is restrained harmonically to the posi-
tions from the incomplete input structure that is used as a
template. The structures sampled at the lowest temperature
at each cycle are used to build an ensemble data structure
in the directoryens.

16. Selection of protein environment near region of
interest

The sampled structures could now be minimized, scored,
and analyzed as in the example above. With 200 residues, the
complete protein is fairly large, and both the minimization
and energy evaluation steps are relatively expensive. Since
only a small part of the structure has been varied in the sam-
pling protocol, one does not necessarily need to consider the
entire structure. The part of the structure in the vicinity of

the variable residues can be cut out according to a distance
cutoff similar to the range of electrostatic interactions, for
example 12 Å. While this would very likely result in broken
peptide chains at the edge of the cutout region the structure
can be kept intact if relatively strong restraints are applied
to fix the outer layer residues in place. This is in the spirit of
the stochastic boundary approach to simulating localized re-
gions of biopolymer structures[52]. Strains between highly
restrained residues and entirely unrestrained parts may be
relieved further if a second, intermediate layer of weakly re-
strained residues is introduced. This setup then results in a
system where the variable residues that are being modeled

are entirely flexible, surrounded by a first layer of weakly
restrained residues and a second layer of highly restrained
residues. Depending on the size of the system and the chosen
cutoff this may result in significant computational advan-
tages if only part of a large system needs to be considered.

The MMTSB Tool Set offers the utilityenscut.plto cut out
such regions for an ensemble of structures and automatically
setup the necessary residue restraint lists. It creates the list
of residues that are included in the cutout region based on
all of the different conformations for the variable residues as
found in the ensemble, so that the same residues are cutout
for each ensemble structure and energy values calculated at
a later point remain comparable.

In our example, we will use a cutoff of 12 Å for including
residues at all and a cutoff of 9 Å for residues that are weakly
restrained:

The cutout structures are then available under the taglat-
cut in the same ensemble and can be used for further process-
ing. In this example the original structure with 200 residues
is reduced to a region of interest of 123 residues, which
translates into significant time savings in subsequent steps.

17. Scoring of conformations

Following the example above, the sampled conformations
are first minimized before being scored with an energy func-
tion that includes implicit solvation based on the generalized
Born formalism[39,40]:

In this case, we create a minimized structure under the
tagcutmin. Options specifying restraints to keep the cutout
region intact during the minimization as described above
are read from an options file generated automatically by
enscut.plwhen the structures were reduced.

18. Clustering and analysis

At this point energy scores are available for the sampled
conformations and we can proceed to cluster the sampled
conformations based on mutual root mean square deviations
with the commandenscluster.pl:
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Since we are primarily interested in the conformation
of residues 48 to 55, we will cluster only based on these
residues, disregarding the surrounding template. A quick
view of the resulting clusters is available with the command
showcluster.pl:

In this example, we find 7 clusters with sizes ranging
from 38 to 435 members.Fig. 8 shows the sampling for
this example with the experimental native structure as the
reference for the RMSD calculations.

The utility getprop.plcould now be used with each cluster
to obtain average energy scores and rank clusters accord-
ingly. However, this can be done more conveniently with
the bestcluster.plutility, which automatically calculates av-
erage scores, standard deviations, and statistical errors for
all clusters and ranks them accordingly. It can also calculate
averages for only the subset of structures where the scores
fall within two standard deviations of the mean. This is help-
ful when outliers occur with very high energies due to steric
clashes that could not be resolved in the minimization pro-
cedure, and is used in the following example:

We find that cluster t.3 (colored red inFig. 8) has the
lowest average score (column 4) and the statistical error of
16.6 kcal/mol (column 6) indicates that the difference of ap-
proximately 100 kcal/mol to the next best cluster t.5 (colored
blue inFig. 8) is significant. The second column shows the
total number of conformations in a given cluster. Column
three indicates how many were actually used to compute
the average, while the remaining conformations with much
higher energy scores were excluded. The results confirm the
qualitative picture inFig. 9 of a downward slope of aver-
age energy towards more native-like structures. It should be
stressed, though, that in a real structure prediction applica-

tion the RMSD values with respect to the native conforma-
tion would obviously not be available.

The lowest energy conformation of the best cluster t.3 can
then be found by callinggetprop.plwith the cluster name

as an additional argument. Finally, one may want to merge
the final conformation with the original template in order
to regain a complete protein structure. This can be done
with theconvpdb.plutility and may be followed by a quick
minimization run with restrained C� atoms to anneal the
merged structure.

In this case, the cluster with the conformations generated
from the lattice protocol that are closest to the native struc-
ture was easily identified with this multiscale sampling pro-
tocol. While the best conformations in this cluster are close
to 2 Å RMSD from the native, the conformation with the
lowest energy score is found with an RMSD value of 3.6 Å.
This structure, shown inFig. 9, has the correct loop confor-
mation for the most part but is shifted somewhat with respect

to the experimental structure. At this point further sampling
and refinement could focus only on structures from the best
cluster in order to better distinguish structures closest to the
native conformation.

18.1. Programming interface

The user-level utilities provide a comprehensive set of
functions for enhanced and multiscale sampling applica-
tions; however the MMTSB Tool Set can also be used as a
programming library for new tasks that involve or combine
all-atom modeling, low-resolution modeling, and enhanced
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sampling methods. Such new applications would have to
be written in Perl in order to take full advantage of the
Perl packages from the tool set, but it is always possible
to include components from other compiled or scripting
languages through wrappers. One may also wrap the Perl
scripts if they are to be used in other scripting environments
although this may not always be an efficient solution.

As an example demonstrating the use of the tool set
packages as a programming library for new Perl scripts,
let us consider the analysis of secondary structure for

low-resolution lattice chains based on backbone dihedral
angles in rebuilt all-atom structures. This is done with the
following steps: First, the SICHO chain file in MONSSTER
format containing the input lattice structure is read. Since
the lattice chain does not contain any sequence information,
we need to read a sequence file, also in MONSSTER format,
for this example. An all-atom molecule object is then rebuilt
from the SICHO lattice chain. Theφ andψ dihedral angles
can then be calculated, analyzed, and written out to standard
output. The corresponding script could be as follows:



M. Feig et al. / Journal of Molecular Graphics and Modelling 22 (2004) 377–395 393

Fig. 8. Energy score including implicit solvent vs. RMSD from native conformation for loop residues 48–55 in astacin (PDB code: 1IAB) for structures
generated with lattice sampling protocol. The cluster with the lowest average energy score, t.3, is colored in red, the second best cluster, t.5, is colored
in blue.

This script uses four packages from the MMTSB Tool
Set and would require significantly more effort if it had to
be written without using the functionality of the tool set.
When this example is run, it expects a sequence and chain
file as input and writes out a list of residues with their
correspondingφ/ψ angles and assigned secondary structure
types.

Fig. 9. Predicted loop conformation (orange) with lowest score from best
cluster (t.3) compared with experimental structure (blue).

19. Summary

We have introduced the MMTSB Tool Set, a collection
of utilities and programming libraries aimed at enhanced
sampling and multiscale modeling applications in struc-
tural biology. The tool set interfaces with the standard
molecular modeling packages CHARMM and Amber for
all-atom modeling and with MONSSTER for low-resolution
lattice-based simulations. It adds a number of functions, such
as the translation between all atom and low resolution repre-
sentations, and implements replica exchange sampling both
for all-atom and lattice-based simulations. Another feature
the MMTSB Tool Set enables ensemble computing for the
application of programs and functions to large sets of struc-
tures. The MMTSB Tool Set is intended primarily to address
problems in protein structure prediction, but it also serves
as a simplified interface to the complex modeling packages
CHARMM, Amber, and MONSSTER and we certainly
hope that it will become useful for other applications as
well.

We have presented three illustrative examples of how the
MMTSB Tool Set may be used. While the examples present
real cases, they are not intended to validate the methods that
were being used. While a more careful evaluation of the
methodology has been ongoing[16,17,51,53,54]and will
be continued in the future, the purpose of this paper is to
demonstrate the capabilities of the tool set.

Future developments of the MMTSB Tool Set may ex-
pand the availability of new enhanced sampling methods,
implement more advanced multiscale sampling algorithms,
and offer an alternative graphics-based user interface.
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