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Abstract

Since biomolecules exist in aqueous and membrane environments, the
accurate modeling of solvation, and hydrogen bonding interactions in
particular, is essential for the exploration of structure and function in
theoretical and computational studies. In this chapter, we focus on alter-
natives to explicit solvent models and discuss recent advances in
generalized Born (GB) implicit solvent theories. We present a brief review
of the successes and shortcomings of the application of these theories to
biomolecular problems that are strongly linked to backbone H-bonding
and electrostatics. This discussion naturally leads us to explore existing
areas for improvement in current GB theories and our approach
towards addressing a number of the key issues that remain in the refine-
ment of these models. Specifically, the critical importance of balancing
solvation forces and intramolecular forces in GB models is illustrated
by examining the influence of backbone hydrogen bond strength and back-
bone dihedral energetics on conformational equilibria of small peptids.
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I. Introduction

Biological function in peptides and proteins is dictated by their con-
formational equilibria as facilitated through changes of secondary structure
and tertiary contacts mediated by hydrophilic and hydrophobic interac-
tions. In particular, hydrogen bonds (H-bonds) formed between backbone
carbonyl oxygens and amide protons play a critical role in determining the
conformational states of peptide chains. Accurate modeling of such inter-
actions in various environments of interest is therefore a key element in the
applications of chemical theory to understanding biological structure and
function. For instance, because proteins exist in a predominantly aqueous
environment, intramolecular H-bonds compete with protein–water
H-bonds. It has been an ongoing interest in the area of molecular modeling
to develop theoretical models, or force fields, that capture the delicate
balance between solvation forces and intramolecular forces (Cornell et al.,
1995; Jorgensen and Tirado‐Rives, 1988; MacKerell, 2004; MacKerell
et al., 1998; van Gunsteren and Berendsen, 1990). One general difficulty
is that the force fields optimized with high‐level quantum mechanics in
vacuum are not directly transferable to solvent environments (MacKerell,
2004). Furthermore, the paucity of direct experimental measurements of
such solvent‐mediated interactions has also added to the difficulty in
calibrating molecular force fields. It appears that one ultimately needs to
examine and improve the quality of the force fields in the context of direct
comparison between available experimental observables and simulations
(or calculations), through protein–protein or protein–ligand binding ther-
modynamics, scoring of protein conformations in structure prediction,
and peptide and protein folding and unfolding studies.

The most straightforward way of accounting for solvation and its effects
on biomolecules is to explicitly include the solvent molecules (primarily
water, but sometimes with lipid membranes) (Brooks and Karplus, 1986;
Roux, 2002). While this approach yields the most detailed information
that can be obtained, the high computational expense, due to (generally
uninteresting) solvent molecules, makes it difficult to apply such a meth-
odology routinely to the aforementioned applications. An alternative,
which addresses issues of computational efficiency while maintaining
physical accuracy, are efforts that have been directed to the development
of so‐called implicit solvent models in which the mean influence of the
solventmolecules around the solute is approximated without having to treat
the solvent explicitly (Feig and Brooks, 2004; Lazaridis and Karplus, 2000;
Roux and Simonson, 1999; Roux et al., 2000). Depending on the theoretical
approaches used to describe the solvation of the solute, implicit solvent
models are mainly classified as (effective) empirical solvation models or
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continuum electrostatics solvation models (Lazaridis and Karplus, 2000;
Roux and Simonson, 1999). In the former approach the solvation‐free
energy of the solute is generally expressed as a sum of atom or group
contributions. Their desolvation energetics due to burial inside the solute
is taken into account by weighting the solvent‐accessible surface area
or solvent‐exclusion volume of each atom or group in accord to an empiri-
cal‐free energy scale. In this way, the solvent‐screened charge–charge
interactions are included empirically. In the latter approach, continuum
electrostatics forms the basis of the theoretical models for solvation. In
such theories, the solute interior and the solvent region are described as
featureless ‘‘low’’ and ‘‘high’’ dielectric regions, respectively. The dielec-
tric difference leads to the development of surface charges at the dielectric
boundary, also called the reaction field potential. Typically, the electrostatic
solvation energy of a solute with an arbitrary shape, including the solvent‐
screened charge–charge interactions, is calculated from numerical solu-
tions of the Poisson–Boltzmann (PB) equation using finite‐difference
methods (Im et al., 1998; Klapper et al., 1986; Nicholls and Honig, 1991;
Warwicker and Watson, 1982). Despite some intrinsic shortcomings arising
from the absence of the granularity of solvent molecules, implicit solvent
models have been applied quite successfully to the aforementioned
research areas (Feig and Brooks, 2004; Lazaridis and Karplus, 2000).
PB continuum electrostatics is the most rigorous and popular method

used to estimate the electrostatic solvation energy of a solute with an
arbitrary shape, and particular successes in applications to complex bio-
molecular problems are evident (Honig and Nicholls, 1995; Murray and
Honig, 2002; Roux et al., 2000). However, the computational cost of solving
the PB equation remains a bottleneck to its application to protein folding
and routine dynamics simulations of biomolecules, despite the progress in
fast PB computational methodologies (David et al., 2000; Luo et al., 2002;
Prabhu et al., 2004). The generalized Born (GB) model, inspired by the
Born equation for solvation energies of ions (Born, 1920), has emerged as
an efficient alternative for implicit inclusion of the electrostatic solvation
energy (Dominy and Brooks, 1999; Ghosh et al., 1998; Hawkins et al., 1996;
Im et al., 2003b; Lee et al., 2002, 2003; Onufriev et al., 2000, 2002; Qiu et al.,
1997; Scarsi et al., 1997; Schaefer and Karplus, 1996; Spassov et al., 2002;
Srinivasan et al., 1999; Still et al., 1990). The GB model is intrinsically based
on the same underlying continuum approximation as used in PB theory
and thus its accuracy is naturally assessed by comparison with the PB results
(Feig and Brooks, 2004; Feig et al., 2004c).
This chapter focuses on the recent developments of GB models and

their applications to biomolecular problems that are strongly linked
to backbone H-bonds and electrostatics. Brief reviews of successes and
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failures of these techniques naturally led us to discuss existing areas for
improvement in current GB models and our approach toward addressing
a number of the key issues.

II. Generalized Born (GB) Models

In this section, GB electrostatics theory is first briefly described to
illustrate the main underlying principles. Then the advances of the models
and their achievements in several biological applications are discussed
together with issues and opportunities for continued development.

A. GB Electrostatics Theory

The solvation free energy, corresponding to the work required to insert
a solute of fixed conformation into a polar solvent, can be approximated
as the sum of nonpolar (np) and electrostatic (elec) contributions, that is,
�Gsolv ¼ �Gelec þ �Gnp (Roux and Simonson, 1999). The nonpolar
solvation energy (�Gnp), which is treated fully empirically, includes the
energetic penalty of forming a cavity in the solvent (�Gcav) and the sol-
vent–solute van der Waals dispersion interactions (�GvdW). A popular
model is to estimate �Gnp as the product of the solvent‐exposed sur-
face area (SA), S, of the solute and a phenomenological surface tension
coefficient g (Gilson et al., 1993; Hermann, 1972; Simonson and Brunger,
1994),

�Gnp ¼ �GvdW þ�GcaV ð1Þ

� gS ð2Þ
However, we note that work by Levy and co‐workers has explored an
efficient computational method to explicitly include the solvent disper-
sion term just described, �GvdW, in the context of a continuum approach
and used Eq. (1) to evaluate �Gnp (Gallicchio and Levy, 2004; Levy et al.,
2003).

The electrostatic solvation free energy, �Gelec, of the solute is the work
required to assemble the charges, {qa}, of the solute in the solvent. Based
on continuum electrostatics, in which the solvent is represented as a
featureless high dielectric medium, �Gelec can be expressed in terms of
the reaction field potential frf(r) or the reaction field Green’s function
Grf(r, r0) (Klapper et al., 1986; Sharp and Honig, 1990; Warwicker and
Watson, 1982),
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�Gelec ¼ 1

2

X
a

qafrfðraÞ

¼ 1

2

X
a b

qaGrfðra; rbÞqb;
ð3Þ

where Grf(r, r0) corresponds to the reaction field potential at r due to
a point charge at r0. The reaction field potential frf(r) can be computed
by solving the Poisson equation or the PB equation if the influences of
salt are included [Eq. (4)], numerically using finite‐difference methods
(Im et al., 1998; Klapper et al., 1986; Nicholls and Honig, 1991; Warwicker
and Watson, 1982)

r � ½EðrÞrfðrÞ� � –k2ðrÞfðrÞ ¼ �4prðrÞ; ð4Þ
where E(r), –k(r), and r(r) are the dielectric constant, the modified Debye–
Hückel screening factor (which accounts for nonspecific ionic strength
effects of electrostatic interactions), and the fixed charge density of the
solute, respectively. Even though it is possible to obtain (numerically) stable
electrostatic solvation forces in the context of the finite‐difference meth-
od (Im et al., 1998; Luo et al., 2002; Prabhu et al., 2004), such calculations
are generally too expensive to perform long molecular dynamics (MD)
simulations of biomolecules.
An efficient alternative, which uses a simple analytical formula for the

reaction field Green’s function Grf(r, r0) in Eq. (3), is given by the GB
formula, first proposed by Still and co‐workers (1990),

�Gelec ¼ � 1

2
t
X
a b

qaqbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2ab þ Ra

GBRb
GBexpð�rab2=4Ra

GBRb
GBÞ

q ; ð5Þ

where RGB
a is the ‘‘effective Born radius’’ of atom a and t ¼ 1/EP � 1/ES;

EP represents the (low) dielectric response of the interior of the solute
and Es the (high) solvent dielectric constant. �Gelec in Eq. (5) corresponds
to the electrostatic free energy of transferring the solute in a medium of
Ep to a medium of ES. In principle, the ‘‘exact’’ effective Born radii can be
calculated by performing PB calculations for one atom at a time by setting
all other charges to zero and then inserting the calculated self (or atomic)
electrostatic solvation energy�Gelec,a into the Born equation (Born, 1920),

�Gelec; a ¼ � 1

2
t
qa2

Ra
GB : ð6Þ

�Gelec,a or RGB
a from PB calculations serve as standard benchmarks for

assessing various approximate GB theories.
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The effective Born radius represents the distance between a particular
atom and a hypothetical spherical dielectric boundary chosen to satisfy
Eq. (6). The principal assumption in the GB method is that the solvent‐
shielded charge–charge interactions in PB can be reproduced by the cross‐
term in Eq. (5) together with the effective Born radii. It can be shown that
Eq. (5) is exact for a pair of atoms, a and b, in the limiting cases of rab ! 0
and rab !1 (Onufriev et al., 2000; Still et al., 1990). Indeed, the GB model
of Eq. (5) has been shown to closely reproduce �Gelec from PB calcula-
tions, provided that the effective Born radii are accurate (Feig et al., 2004c).
As such, most of the extensive literature on extensions of the GB theory
has been focused on efficient and accurate evaluation of the Born
radii (Dominy and Brooks, 1999; Gallicchio and Levy, 2004; Ghosh et al.,
1998; Hawkins et al., 1996; Im et al., 2003b; Lee et al., 2002, 2003; Onufriev
et al., 2000, 2002; Qiu et al., 1997; Scarsi et al., 1997; Schaefer and Karplus,
1996; Srinivasan et al., 1999; Still et al., 1990).

Briefly, the basic idea for the estimation of the effective Born radius is
based on the so‐called Coulomb field approximation (CFA), which is exact
for a charge in the center of a spherical cavity and assumes that the
dielectric displacement follows Coulomb’s law, independent of the exter-
nal dielectric (Bashford and Case, 2000; Scarsi et al., 1997; Still et al., 1990).
Expressing �Gelec,a in terms of the dielectric displacement results in the
following expression that can be used for RGB

a through Eq. (6) [for a
complete derivation, see Bashford and Case (2000)],

�G0
elec; a ¼ � 1

2
tq2a

1

�a
� 1

4p

Z
r>�a

dr
nðr; fragÞ
jr� raj4

0
B@

1
CA; ð7Þ

where �a is an arbitrarily defined integration starting point, necessary to
avoid the singularity at |r � ra| ¼ 0, and n(r) is a solute volume function,
which has a value of one in the interior of a solute and zero in the solvent
region. The CFA, Eq. (7), is the basis for most GB implementations and
various GB models mainly differ on how the volume integral is evaluated.
The integral is usually evaluated by numerical surface/volume integration
methods (Ghosh et al., 1998; Im et al., 2003b; Lee et al., 2002, 2003;
Scarsi et al., 1997; Still et al., 1990) or pairwise summation approximations
(Dominy and Brooks, 1999; Gallicchio and Levy, 2004; Hawkins et al., 1996;
Qiu et al., 1997) [for more detailed information, see also Zhu et al., (2005)].
It should be noted that a more elaborate formalism than the CFA is
required to accurately estimate the effective Born radii in different dielec-
tric environments, that is, as a function of the dielectric constant of the
solvent and the solute (Feig et al., 2004a; Sigalov et al., 2005).
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B. Advances and Achievements

1. Performance of GB Compared to PB

Because the GB model is intrinsically based on the same underlying
continuum representation as in PB theory, the accuracy of various GB
models has been primarily examined by quantitative comparisons between
�Gelec from PB and �Gelec from GB for small molecules as well as folded
and misfolded protein conformations. To overcome the well‐known issue
that the CFA underestimates �Gelec,a and thus overestimates RGB

a com-
pared to PB results, Lee et al. (2002, 2003) introduced higher order terms
to Eq. (7) as heuristic corrections beyond the CFA, resulting in effective
Born radii very close to PB results and, consequently, more accurate esti-
mates of total solvation energies; less than 1% error on average was
achieved for absolute electrostatic solvation energies of a large set of
proteins and for relative solvation energies of protein conformations,
compared to the corresponding PB solvation energies. Feig et al. (2004c)
summarized the performance of various GB implementations against PB
calculations. By using the same smoothed dielectric boundary in both PB
and GB, Im et al. (2003b) showed that GB could reproduce corresponding
PB electrostatic solvation forces as well as energies. Over the past decade,
methodological developments in GB formalisms have reached a mature
stage in which the accuracy of the GB models is almost identical to the PB
method. Furthermore, recent PB implicit solvent MD simulations may
provide an opportunity for direct comparisons between PB and GB models
for dynamic properties of proteins (Prabhu et al., 2004).

2. Scoring of Protein Conformations

Distinguishing native and near‐native structures from nonnative decoys
is an important task in protein structure prediction. The nature of these
problems reinforces the point that the scoring function must be fast and
accurate enough for good scoring performance, which provides motiva-
tion, challenge, and validation to the physics‐based energy functions (e.g.,
modern molecular mechanics plus continuum dielectric solvent models).
While there exists some evidence that a GB model might not help for this
purpose (Morozov et al., 2003), a number of other studies have shown that
the physics‐based energy functions perform well in distinguishing native
and near‐native folds (Dominy and Brooks, 2001; Feig and Brooks, 2002;
Felts et al., 2002; Zhu et al., 2003) and loop conformations (Fiser et al., 2002;
Forrest and Woolf, 2003) from a large set of nonnative decoys. Recent
examination of GB and PB implicit solvation models in the context of
computational protein design revealed a systematic bias that the burial of

IMPLICIT SOLVENT ELECTROSTATICS AND H-BONDING 179



polar amino acids in the protein interior is more favored than that of
nonpolar ones, which can be problematic in protein design (Jaramillo
and Wodak, 2005). This study suggests that further improvements of the
GB implicit solvent models can be achieved (see Section II, C for more
detailed discussions).

3. Protein–Protein and Protein–Ligand Binding

Molecular recognition such as occurs in protein–protein, protein–
ligand, and protein–DNA interactions is a key process for many biological
functions. Proper evaluation of protein–protein interactions will be very
helpful in understanding cellular processes (Wodak and Mendez, 2004),
and insights into protein–ligand interactions are necessary for drug discov-
ery (Ferrara et al., 2004). However, it is this area where successful applica-
tions of GB implicit solvent models have appeared to be limited (Ferrara
et al., 2004; Wang and Wade, 2003), although some success has been
documented (Gohlke and Case, 2003). Therefore, further optimization
of implicit solvent force fields for this purpose is anticipated.

4. Protein Folding/Unfolding

One of the most exciting aspects of developing efficient implicit solvent
models is thepotential theyprovide for studies of protein folding/unfolding
in atomic detail (Bursulaya and Brooks, 2000). Considerable efforts have
focused on examination of the implicit solvent models by close comparison
with explicit solvent simulations (Bursulaya and Brooks, 2000; Nymeyer
and Garcia, 2003; Zhou, 2003; Zhou and Berne, 2002) and with experimen-
tal data (Lin et al., 2003; Pitera and Swope, 2003; Steinbach, 2004; Zagrovic
et al., 2001). Discrepancies in both global minima of free energy surfaces
and detailed local structures, such as salt bridge formation and helical
content, have been observed, indicating that room exists for further im-
provement of the GB implicit solvent models (see Section II, C for more
detailed discussions). Nevertheless, successful applications of implicit sol-
vent models to address more specific problems in protein folding have
been reported (Karanicolas and Brooks, 2004; Ohkubo and Brooks, 2003).
In addition, recent years have seen quite a few successful applications of
various GB implicit solvent models to ab initio structure prediction for a
number of miniproteins, such as protein A ( Jang et al., 2003a), villin
headpiece ( Jang et al., 2003a; Liu and Beveridge, 2002), Trp‐cage (Pitera
and Swope, 2003), Trp‐zip (Okur et al., 2003; Steinbach, 2004; Yang et al.,
2004), bba motifs (Jang et al., 2003b), and the fd Coat transmembrane
protein (Im and Brooks, 2004). These calculations have demonstrated the
feasibility of general structure prediction procedures based on efficient
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physics‐based force fields, especially when combined with advanced sam-
pling techniques such as the replica‐exchange (REX) method (Feig et al.,
2004b; Hansmann, 1997; Sugita and Okamoto, 1999).

5. Nuclear Magnetic Resonance (NMR) and X‐Ray Structure Refinement

Electrostatic interactions are often oversimplified or ignored in the
energy functions for NMR and X‐ray structure calculations because it is
difficult to evaluate them reliably without proper description of the dielec-
tric screening by solvent. In light of recent improvements in implicit
solvent models, Xia et al. (2002) showed that simulated annealing refine-
ment in a GB implicit solvent could lead to noticeable improvement in the
final protein NMR structures in terms of the backbone dihedral angle
distributions and hydrogen bond patterns. However, the impact of an
implicit solvent is rather small when a sufficient number of experimental
restraints exist (such as in the final stage of NMR structure determination).
In contrast, it was demonstrated that replica exchange molecular dynamics
(REX‐MD) refinement in a GB implicit solvent model could significantly
improve the quality of structures and the radius of convergence when
experimental data are limited (Chen et al., 2004). For example, while
conventional structure calculations using an initial set of sparse NOE
restraints were unable to identify a unique topology for a protein do-
main, high‐quality native‐like initial folds were generated through REX‐
MD refinement of the initial structures with a GB implicit solvent (Chen
et al., 2005). These models could be then used to make further assignments
of ambiguous NOEs and speed up the structure determination process.
Moulinier et al. (2003) and Korostelev et al. (2004) documented the use
of continuum electrostatics PB and GB approaches for refining X‐ray
structures.

6. Constant pH Molecular Dynamics

The stability and function of proteins, as well as many biological
processes, are dependent on the environmental pH; examples include
fibril formation of amyloid peptides and prion proteins (Clippingdale
et al., 2001; Kelly, 1997), membrane fusion of influenza virus (Bullough
et al., 1994), and proton gradient‐driven ATP synthesis (Rastogi and Girvin,
1999). Conventional MD simulations use predefined protonation states of
the protein, making it difficult to explore such pH‐coupled biological
phenomena. To overcome these difficulties and achieve efficient confor-
mational sampling, pH‐coupled MD simulation techniques based on GB
implicit solvent models have been developed (Dlugosz and Antosiewicz,
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2004; Khandogin and Brooks, 2005; Lee et al., 2004; Mongan and Case,
2005; Mongan et al., 2004). The protonation states of titratable residues
are adjusted on the fly based on their pKa values during the simulations
either discontinuously using a Monte Carlo (MC) technique (Dlugosz and
Antosiewicz, 2004; Mongan et al., 2004) or continuously using a l‐dynamics
technique (Khandogin and Brooks, 2005; Lee et al., 2004).

7. Implicit Membrane Environment

PB continuum electrostatics has proven useful in many aspects of mem-
brane modeling (Im and Roux, 2002; Murray and Honig, 2002; Roux et al.,
2000); however, repeated numerical solutions to the PB equation remain
too cumbersome for applications requiring extensive conformational sam-
pling. To circumvent these difficulties, a number of methodologies for
implicit membrane modeling based on GB electrostatics theory have
appeared in the past few years (Im et al., 2003a; Spassov et al., 2002; Tanizaki
and Feig, 2005). These methods provide a rapid means of evaluating the
energies and forces of proteins in a membrane environment and may serve
as platforms for exploring dynamics, insertion, folding, and assembly of
membrane proteins and peptides. For example, by combining amembrane
GBmodel with the REX‐MDmethod, it has been shown that it is possible to
fold and assemble simple helical membrane peptides (Im et al., 2003a),
predict the structure of a small membrane‐bound protein and reproduce
its solid‐state NMR properties reasonably well (Im and Brooks, 2004), and
explore the membrane insertion mechanism and interfacial folding of
designed peptides (Im and Brooks, 2005).

In summary, it is evident that GB formalisms have reached a mature
stage and that their accuracy is essentially identical to the PB method (Feig
et al., 2004c). Many successful applications to various biological problems
are encouraging, demonstrating the great potential of the GB implicit
solvent models for studies of biomolecular structure and function. None-
theless, the limited successes in protein folding, and protein–protein and
protein–ligand binding point to remaining opportunities for continued
improvement of GB implicit solvent force fields.

C. Remaining Opportunities for Continued Improvement

Continuum dielectric solvent models may yield considerable disagree-
ment with explicit water simulations, especially when the detailed inter-
play of a few water molecules (which are significantly distinct from the
bulk water) in solvent‐mediated intramolecular interactions exists. Des-
pite this limitation, the previous section demonstrates that there are many
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biological problems for which GB‐based continuum dielectric solvent
models can provide insights that are very difficult to gain from explicit
solvent models. The successes and failures of various implicit solvent
models in applications to the aforementioned biological problems arise
in principle from their ability in balancing delicate energetics between sets
of the competing interactions, that is, the solvation preference of each side
chain and the peptide backbone in aqueous bulk solution versus the
strength of solvent‐mediated interactions between these moieties in a
complex protein environment. In terms of electrostatic interactions, the
intramolecular Coulombic interaction energy in the protein is known to
be strongly anticorrelated with the electrostatic solvation energy. Similarly,
the intramolecular van der Waals dispersion interaction energy in the
protein also strongly anticorrelates with the nonpolar solvation energy.
These competing, opposing forces mostly cancel each other, and a shift in
the balance, depending on the extent of specific interactions in a given
protein conformation and environment, can lead to a bias in conforma-
tional equilibria. To what extent a GB force field can capture this delicate
balance appears to be a key in the success of its applications. Achieving
sufficient balance of these competing interactions in a force field for
complex biological systems is a very challenging task. In addition to the
general difficulty that force fields optimized with high‐level quantum
mechanics are not directly transferable to solvent environments, the lack
of direct experimental data on solvation energies of proteins, as well as the
pairwise interactions between polar groups in solvent environments, has
also added to difficulties in improving the quality of implicit solvent force
fields. As such, it appears that one has to resort to thermodynamic data
from explicit water simulations and available experimental observables
such as protein stability and conformation equilibria.
Toward this end, it might be a reasonable starting point to examine the

solvent‐mediated interactions between polar groups and further optimize
the implicit solvent force field based on potentials of mean force (PMF)
calculated using explicit solvent MD simulations. Masunov and Lazaridis
(2003) carefully examined explicit water PMFs between all possible ioniz-
able amino acid side chain pairs in various protonation states. Comparisons
with various implicit solvent models revealed that stronger salt bridges are
formed in implicit solvent models than in explicit water, which has been
reported as well in other studies (Nymeyer and Garcia, 2003; Zhou, 2003;
Zhou and Berne, 2002). This overstabilization might be amplified even
more in the low dielectric protein interior, which appears to be problemat-
ic in many applications, such as protein design ( Jaramillo and Wodak,
2005). In continuum dielectric solvent models, the extent of solvent expo-
sure of each atom at the dielectric boundary dictates all of the electrostatic
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and most of the nonpolar solvation energetics. Thus, it is physically appro-
priate to optimize the input radii, by which the low dielectric region and
the high dielectric region are divided, not only based on solvation of
individual sidechains, but also in consideration of solvent‐mediated inter-
actions. In principle, partial charges, Lennard–Jones parameters, and back-
bone dihedral energetics in current molecular mechanics force fields may
also need to be adjusted for a specific implicit solvent model to achieve
the sufficient balance. However, considering that the current force fields
have been calibrated extensively over the past decades to achieve proper
solvent–solute and solute–solute interactions in explicit solvent models, at
this moment, adjusting the input radii in implicit dielectric solvent models
to reproduce explicit‐solvent PMFs is a reasonable ‘‘first pass’’ approach.
As an illustration and first step toward this aim, in the next section the
backbone input radii for a GB model are optimized to reproduce solvent‐
mediated backbone H‐bond strength in an explicit water model and then
the influence of backbone H‐bond strength on peptide conformational
equilibria is examined and verified by folding simulations of small pep-
tides. In addition, we also illustrate the influence of backbone dihedral
energetics on conformation equilibria.

III. Peptide Folding and Conformational Equilibria

A. Influence of Backbone H‐Bond Strength on
Conformational Equilibria

Backbone H-bonds play an important role in determining the confor-
mational states of peptide chains. Their inherent stability is therefore a key
element in the calibration of theoretical models. For example, overstabi-
lization of backbone H-bonds cannot only lead to excessive helical con-
tent, but also hinders efficient sampling of the protein conformation space
by creating energetic traps. Destabilization of backbone H-bonds in a
force field, however, can greatly reduce the overall stability of the protein
structure and result in its rapid unfolding. Strong dependence of the
H-bond strength on its environment makes it very difficult to choose
representative model systems to explore these issues. For example, Kelly
and co‐workers employed an amide‐to‐ester perturbation to estimate the
position‐dependent backbone H‐bond contributions to protein stability
(Deechongkit et al., 2004a,b); backbone H-bonds were estimated to stabi-
lize a three‐stranded b protein by 1.5 to 5.0 kcal/mol, depending on
the position in the protein. Furthermore, the lack of direct experimental
data has also added to the difficulty in calibrating force fields for such
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interactions. It seems that one ultimately needs to examine the quality
of the force field in the context of actual peptide and protein folding
and unfolding simulations to achieve the proper balance of interactions.
An ideal force field should mimic the delicate balance among the com-
peting interactions and be capable of providing correct conformational
equilibria.
Explicit solvent simulations arguably provide the highest accuracy in

describing the conformational equilibria of peptides and proteins. The
paucity of direct experimental data of the H‐bond strength makes these
simulations a useful guide for calibrating implicit solvent models, with the
caveat that these force fields are also not perfect. In the present work, to
calibrate the backbone parameters of a GB implicit solvent model, we have
utilized the potential of mean force (PMF) of H‐bond formation between
a modified alanine dipeptide dimer, shown in Fig. 1. The approach is then
verified by folding simulations of a synthetic peptide with the sequence
of (AAQAA)3 and a small peptide from residues 101–111 of a‐lactalbumin
(a‐lac) whose conformational equilibria have been determined previously
(Demarest et al., 1999; Shalongo et al., 1994). We note that these efforts
represent only preliminary steps in the development of a fully consistent
implicit (GB) solvent force field, but the present studies illustrate the
general approach one should use in developing such a force field.

Fig. 1. The modified alanine dipeptide dimer with the partial charges and the
reaction coordinate [r (O. . .H) for hydrogen bond formation] indicated. The dimer is
constrained to move along a straight line, and the relative orientation of two molecules,
defined by planes of heavy atoms, are also constrained to be perpendicular to each other.
Note that the H‐bond partner is a model system with only the backbone H‐bonding
functionality included.
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In the explicit solvent simulations the modified alanine dipeptide dimer
is constrained to move along a straight line in a specific orientation using
the MMFP module in CHARMM (Brooks et al., 1983). The system was
solvated by about 750 water molecules in a rectangular box with periodic
boundary conditions. The all‐atom parameter set PARAM22 for the solute
(MacKerell et al., 1998) and a modified TIP3P water model (Jorgensen
et al., 1983) were used. To remove the artifacts associated with truncation of
electrostatic forces, electrostatic interactions were calculated using the
particle mesh Ewald method (PME) (Essmann et al., 1995). The van der
Waals energy was smoothly switched off at 10–12 Å by use of a switching
function (Brooks et al., 1985; Steinbach and Brooks, 1994). Biased sam-
pling along the reaction coordinate was carried out using the umbrella
sampling technique (Torrie and Valleau, 1977), and the final PMF was
calculated using the weighted histogram analysis method (WHAM)
(Boczko and Brooks, 1993; Kumar et al., 1992; Roux, 1995). For each
window, equilibration simulations of 60 ps at constant pressure and tem-
perature (NPT) were followed by 1 ns of production sampling at constant
volume and temperature (NVT). The SHAKE algorithm (Ryckaert et al.,
1977) was applied to fix lengths of all bonds involving hydrogen atoms and
a time step of 2 fs was used. Corresponding PMFs in implicit solvent were
computed directly by translating the molecules away from each other along
the reaction coordinate. Note that PMFs computed with the aforemen-
tioned setup do not include the contribution of solute conformational
entropy. However, this contribution is assumed to be similar in both
explicit and implicit solvent models and thus omitting it in both cases
should not affect the GB optimization. Figure 2 shows the PMF of H‐
bond formation in the dipeptide dimer in TIP3P water. The H‐bond

Fig. 2. Free energy profile for hydrogen bond formation of the modified alanine
dipeptide dimer in TIP3P water.
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stability appears to be about 2.0 kcal/mol, which falls within previously
determined theoretical estimates of H‐bond strengths, ranging from less
than 0.5 kcal/mol for the well‐exposed formamide dimer (Sneddon et al.,
1989) to about 2.7 kcal/mol in a b‐sheet environment (Tobias et al., 1992).
As mentioned in Section II,C, one of the key parameters in GB implicit

solvent models is the input atomic radii that are used to define the solvent–
solute dielectric boundaries. The choice of optimal radii is coupled intrin-
sically with the choice of the boundary surfaces. In the present study, we
focus on optimization of a GB model with a simple switching function
(GBSW) (Im et al., 2003b) and Ep is set to 1 to be consistent with the
molecular mechanics force field. The input radii consistent with such a
surface definition have been optimized previously based on the radial
solvent charge distribution as well as the charging free energies calculated
by MD free energy simulations (MD/FES) for 20 standard amino acids
(Nina et al., 1997, 1999) (hereinafter referred to as the Nina’s radii).
However, even though the Nina’s radii set has been shown to work well
in several applications from folding to NMR structure refinement (see
Section II,B), optimizing the overall electrostatic solvation free energy
does not explicitly balance the interactions between polar groups in the
solvent, which might be more important in studying large conformational
changes, such as in folding simulations. For example, the modified alanine
dipeptide dimer is overstabilized by about 0.4 kcal/mol in the GBSW
implicit solvent with Nina’s radii (see the black curve in Fig. 3a). Note
that with the smoothed surface definition, the solvation peak around 3.0 Å
is reduced greatly (see Fig. 2). While this may alter the kinetics of H‐bond
formation, the lack of kinetic barriers can speed up conformational
sampling and is thus advantageous when one is interested primarily in
identifying the most stable thermodynamic states, such as in ab initio
protein structure prediction. As demonstrated clearly in Fig. 3, small
changes in the underlying backbone interactions can translate into sub-
stantial changes in conformational equilibria of the peptides. The average
helicity of (AAQAA)3 has been measured by NMR to be around 50% at 274
K. This information can be used as a guide, in addition to the explicit
solvent simulations, to identify and verify a set of optimal input radii. Due
to the uncertainties in simulations as well as experiments, multiple sets of
atomic radii, which appear to provide comparable results for a single
system, should be then examined further using folding simulations of
mini and small proteins. For example, Fig. 4 compares the residue helicity
of peptide a‐lac using Nina’s radii and an optimized radii set in which the
amide nitrogen was set to 1.95 Å (the purple curves in Fig. 3a). It also
demonstrates that modified radii lead to satisfactory agreement with the
experimental results that residues 108–111 are largely unstructured
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(Demarest et al., 1999). Note that while such small adjustments of input
radii can greatly improve the backbone interactions as reflected in better
agreement of simulated conformational equilibria with experimental
results, they do not significantly alter the overall electrostatic solvation‐
free energy. For example, the electrostatic solvation‐free energy of alanine
dipeptide changes only by about 5% from�14.8 kcal/mol (Nina’s radii) to
�15.6 kcal/mol (the optimized set) in the GBSW implicit solvent. Multiple
nanosecond REX‐MD simulations starting from the native structures for
several small‐ to medium‐sized proteins verified that these proteins are still
sufficiently stable with optimized radii (data not shown). Extensive control

Fig. 3. (a) Free energy profiles for H‐bond formation in the modified alanine dipep-
tide dimer in GBSW implicit solvent, and (b) corresponding simulated helicity of
(AAQAA)3 as a function of temperature. The same colored curves in both panels were
obtained using the same input radii. Only the input radius of the amide nitrogen was
adjusted from 2.23 Å (black) in original Nina’s radii to 2.15 Å (blue), 2.0 Å (yellow),
1.95 Å (purple), 1.9 Å (green), and 1.85 Å (red). Replica exchange molecular dynamics
(REX‐MD) simulations of 10 ns for each curve were carried out using 16 replicas from
270 to 500 K to obtain the conformational equilibria (Feig et al., 2004b; Sugita and
Okamoto, 1999). Conformations from the last 8 ns were included in the helicity calcula-
tion. Longer simulations, as well as repeated simulations, appear to indicate that 10 ns
is sufficient for the convergence of computed helicity (data not shown). The helicity
was computed from average 1–4 H‐bond frequency defined by dOi..HNiþ4


 2.6 Å, where
dOi..HNiþ4

is the distance between the carbonyl oxygen of residue i, Oi, and the amide
hydrogen of residue iþ 4, HNi þ 4. Note that using backbone dihedral criteria resulted in
similar but shifted helicity curves (data not shown). Original Nina’s radii (black curves)
clearly overstabilize the dimer and give rise to helicity larger than experimental values.
(See Color Insert.)
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and folding simulations of more complex systems, as well as similar calibra-
tion of the interactions between polar side chains, are necessary to more
rigorously test and calibrate the implicit solvent force field.

B. Influence of Backbone Dihedral Energetics on Conformational Equilibria

In addition to backbone H-bonds, accurate treatment of the peptide
backbone dihedral energetics is crucial to achieve correct conformational
distributions in simulation studies (Feig et al., 2003; MacKerell et al.,
2004a,b). For example, correct a‐ and p‐helical contents were obtained
by modifying the CHARMM22 backbone f/c potential surface to repro-
duce high‐level quantum mechanical (QM) calculations using CMAP dihe-
dral cross terms (Feig et al., 2003). Further modification was later
introduced empirically based on explicit solvent MD simulations of several
proteins in both crystal and aqueous environment (MacKerell et al., 2004a),
where agreement of simulated backbone f, c distributions with experi-
mental crystallographic data was the target. However, these empirical
adjustments may not be transferable from one solvent model (namely
TIP3P) to another (e.g., GB implicit solvent models). Therefore, it is
necessary to examine the influence of backbone dihedral energetics

Fig. 4. Residue helicity of a small peptide from residues 101–111 of a‐lactalbumin
IIDYWLAHKALA, calculated with Nina’s radii and an optimized radii set where the
amide nitrogen input radius was adjusted from original 2.23 to 1.95 Å. Conformations
at 270 K extracted from the last 8 ns of 10‐ns REX‐MD simulations using 16 replicas were
used to compute the helicity. A residue is considered helical if it belongs to a segment of
at least three residues whose backbone dihedral angles are within 30� from (f, c) ¼
(�57�, �47�). Note that the short length of the peptide made it very difficult to use the
same hydrogen bond definition used in Fig. 3, i.e., dOi..HNiþ4


 2.6 Å.
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on conformational equilibria in the context of specific implicit solvent
models. As shown in Fig. 5a, the simulated helicity of (AAQAA)3 in
GBSW implicit solvent increases substantially with the newest CMAP poten-
tial, which is consistent with the difference between two CMAP potentials
shown in Fig. 5b. It should be stressed that this does not necessarily mean
that the new CMAP potential is problematic. However, it does raise a
warning flag that the modifications possibly overstabilize specific secondary
structures. As mentioned earlier, folding simulations on peptides and small
proteins might provide an ultimate check on the quality of the force field.

IV. Concluding Discussion

In computational biology, the environment specific to biomolecules of
interest must be treated properly for meaningful studies of their structural
and dynamic features. Solvation exerts competing, opposing forces on
intramolecular interactions in peptides and proteins and plays a critical
role in determining their conformational states that, in turn, dictates the
biological functions of peptides and proteins. As an efficient and physical
model to account for solvation, we have introduced GB continuum elec-
trostatic theory and described its underlying principles and recent devel-
opments. Methodological developments in GB formalism have reached a

Fig. 5. (a) Simulated helicity of (AAQAA)3 as a function of temperature with the QM‐
based (solid line) and further modified (dashed line) CMAP potentials. The same setup
for REX‐MD simulations and H‐bond calculations as in Fig. 3 was used. The same
optimized input radii as those in Fig. 4 were used. (b) Surface and contour plots of the
difference between QM‐based and modified CMAP potentials, i.e., Emod

CMAP � E
QM
CMAP. (See

Color Insert.)
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mature stage in which the accuracy of the GB models is almost identical to
the PB method. To illustrate how one can gain useful insights into
various biological problems using these efficient implicit solvent models,
we have briefly reviewed their recent applications to protein structure
prediction, molecular recognition problems, protein folding and unfold-
ing, NMR and X‐ray structure refinement, pH‐coupled MD simulations,
and membrane protein modeling. This also provides us an opportunity to
discuss existing areas for improvement in current GB implicit solvent
force fields.
In principle, one may need to optimize partial charges, Lennard–Jones

parameters, and backbone dihedral energetics in current molecular me-
chanics force fields for a specific implicit solvent model to achieve suffi-
cient balance between solvent–solute and solute–solute interactions. Given
the fact that the current force fields have been calibrated extensively to
met such a proper balance, however, we illustrated another possible route
to optimize a GB implicit solvent force field; in the present study, the
backbone H‐bond strength was calibrated by adjusting the backbone input
radii for a GB model. Because the dielectric boundary in continuum
dielectric solvent models dictates all of the electrostatic and most of
nonpolar solvation energetics, it is physically appropriate to optimize
input radii not only based on solvation of individual side chains, but
also in consideration of solvent‐mediated interactions. Our study of con-
formational equilibria of two peptides, (AAQAA)3 and a‐lac, demonstrated
that the helical content can be changed significantly with small modifica-
tion of backbone input radii based on explicit‐solvent H‐bond PMFs. For
instance, a small change of the amide nitrogen input radius from 2.23 Å
(the Nina’s radii) to 1.95 Å, which corresponds to 0.4 kcal/mol H‐bond
strength difference in an alanine dipeptide model, alters the average
helicity of (AAQAA)3 from 83 to 55%, closer to the 50% value observed
in experiments. In the case of a‐lac, the same modification results in about
a 25% reduction in the helicity of residues 108–111, which is in accord with
the experimental results that the peptide is largely unstructured in water.
In addition, we illustrated that the backbone dihedral energetics can have a
large impact on conformation equilibria.
Because of the paucity of experimental measurements of direct solvent‐

mediated interactions, comparison with other experimental observables
(e.g., those reflecting conformational equilibria) should be used as a
guide, in addition to the explicit solvent simulations, to identify and
verify optimal input radii in continuum models such as PB and GB. Due
to the uncertainties in simulations as well as experiments, multiple sets
of atomic radii, which appear to provide comparable results for a
single system, should be then examined further in terms of folding and
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unfolding simulations of mini and small proteins and by monitoring
stability of various medium and large proteins. It is hoped that proper
parameterization of GB implicit solvent force fields will enable us to gain
more useful insights into various biological problems, which are often very
difficult to obtain from explicit solvent models or through experimental
study.
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