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Abstract: CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecu-

lar simulation program. It has been developed over the last three decades with a primary focus on molecules of bio-

logical interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they

occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large

suite of computational tools that include numerous conformational and path sampling methods, free energy estima-

tors, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM

program is applicable to problems involving a much broader class of many-particle systems. Calculations with

CHARMM can be performed using a number of different energy functions and models, from mixed quantum

mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent

and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numer-

ous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists

today with an emphasis on developments since the publication of the original CHARMM article in 1983.

q 2009 Wiley Periodicals, Inc. J Comput Chem 30: 1545–1614, 2009
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I. Introduction

Understanding how biological macromolecular systems (proteins,

nucleic acids, lipid membranes, carbohydrates, and their com-

plexes) function is a major objective of current research by com-

putational chemists and biophysicists. The hypothesis underlying

computational models of biological macromolecules is that the

behavior of such systems can be described in terms of the basic

physical principles governing the interactions and motions of
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their elementary atomic constituents. The models are, thus,

rooted in the fundamental laws of physics and chemistry, includ-

ing electrostatics, quantum mechanics and statistical mechanics.

The challenge now is in the development and application of

methods, based on such well-established principles, to shed light

on the structure, function, and properties of often complex bio-

molecular systems. With the advent of computers, the scope of

molecular dynamics (MD; see footnote for naming conventions)y

and other simulation techniques has evolved from the study of

simple hard-sphere models of liquids in the 1950s,1 to that of

models of more complex atomic and molecular liquids in the

1960s,2,3 and to the study of proteins in the 1970s.4 Biological

macromolecular systems of increasing size and complexity,

including nucleic acids, viruses, membrane proteins, and macro-

molecular assemblies, are now being investigated using these

computational methods.

The power and usefulness of atomic models based on realis-

tic microscopic interactions for investigating the properties of a

wide variety of biomolecules, as well as other chemical systems,

has been amply demonstrated. The methodology and applica-

tions have been described in numerous books5–10 and

reviews.11–13 Studies of such systems have now reached a point

where computational models often have an important role in the

design and interpretation of experiments. Of particular interest is

the possibility of employing molecular simulations to obtain in-

formation that is difficult to determine experimentally.14,15 A

dictionary definition of ‘‘simulation’’ is, in fact, ‘‘the examina-

tion of a problem, often not subject to direct experimentation,’’

and it is this broad meaning that is intended here. Typical stud-

ies range from those concerned with the structures, energies, and

vibrational frequencies of small molecules, through those dealing

with Monte Carlo and MD simulations of pure liquids and solu-

tions, to analyses of the conformational energies and fluctuations

of large molecules in solution or in crystal environments.

As the field of biomolecular computation continues to evolve,

it is essential to retain maximum flexibility and to have available

a wide range of computational methods for the implementation

of novel ideas in research and its applications. The need to have

an integrated approach for the development and application of

such computational biophysical methods has led to the introduc-

tion of a number of general-purpose programs, some of which

are widely distributed in academic and commercial environ-

ments. Several16–21 were described in a special 2005 issue of

Journal of Computational Chemistry (JCC). One of the pro-

grams, CHARMM (Chemistry at HARvard Molecular Mechan-

ics), was not included in that publication because an article was

not prepared in time for the issue. CHARMM was first described

in JCC in 1983,22 although its earlier implementations had

already been used to study biomolecules for a number of

years.23

CHARMM is a general and flexible molecular simulation and

modeling program that uses classical (empirical and semiempiri-

cal) and quantum mechanical (QM) (semiempirical or ab initio)
energy functions for molecular systems of many different

classes, sizes, and levels of heterogeneity and complexity. The

original version of the program, although considerably smaller

and more limited than CHARMM is at present, made it possible

to build the system of interest, optimize the configuration using

energy minimization techniques, perform a normal mode or MD

simulation, and analyze the simulation results to determine struc-

tural, equilibrium, and dynamic properties. This version of

CHARMM22,24 was able to treat isolated molecules, molecules

in solution, and molecules in crystalline solids. The information

for computations on proteins, nucleic acids, prosthetic groups

(e.g., heme groups), and substrates was available as part of the

program. A large set of analysis facilities was provided, which

included static structure and energy comparisons, time series,

correlation functions and statistical properties of molecular

dynamic trajectories, and interfaces to computer graphics pro-

grams. Over the years, CHARMM has been ported to many dif-

ferent machines and platforms, in both serial and parallel imple-

mentations of the code; and it has been made to run efficiently

on many types of computer systems, from single processor PCs,

Mac and Linux workstations, to machines based on vectorial or

multicore processors, to distributed-memory clusters of Linux

machines, and large, shared-memory supercomputer installations.

Equally important, the structure of the program has provided a

robust framework for incorporating new ideas and methodolo-

gies—many of which did not even exist when CHARMM was

first designed and coded in the late 1970s. Some examples are

implicit solvent representations, free energy perturbation meth-

ods, structure refinement based on X-ray or NMR data, transi-

tion path sampling, locally enhanced sampling with multiple

copies, discretized Feynman path integral simulations, quantum

mechanical/molecular mechanical (QM/MM) simulations, and

the treatment of induced polarization. The ability of the basic

framework of CHARMM to accommodate new methods without

large-scale restructuring of the code is one of the major

reasons for the continuing success of the program as a vehicle

for the development of computational molecular biophysics.

The primary goal of this article is to provide an overview of

CHARMM as it exists today, focusing on the developments of

the program during the 25 years since the publication of the first

article describing the CHARMM program in 1983.22 In addition,

the current article briefly reviews the origin of the program, its

management, its distribution to a broad group of users, and

future directions in its development. Some familiarity with the

original CHARMM article is assumed. Although many details of

CHARMM usage, such as input commands and options, are

included, full documentation is available online at www.charm-

m.org, as well as with all distributions of the program. The pres-

ent work also provides, de facto, a review of the current state of

the art in computational molecular biophysics. Consequently, it

yMethod abbreviations, e.g., MD for molecular dynamics and MEP for

minimum energy path, and module names, e.g., PBEQ for the PB mod-

ule, as well as preprocessor keywords (see Section XI.B.), are in allcaps.

CHARMM commands, subcommands, or command options are in italics
with the first four letters capitalized. (The parser in CHARMM uses only

the first four letters of a command; however, it is case-insensitive.) The

term ‘‘keyword’’ is reserved for preprocessor keywords, not command

options. File and directory names are enclosed in quotation marks, e.g.,

‘‘build’’ directory. The ‘‘module’’ designation refers to portions of

CHARMM source code that form a modular functional unit, not neces-

sarily a Fortran module.
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should be of interest not only to the CHARMM user

community, but also to scientists employing other programs.

II. Overview of the Program

The central motivation for creating and developing the molecu-

lar simulation program CHARMM is to provide an integrated

environment that includes a wide range of tools for the theoreti-

cal investigation of complex macromolecular systems, with par-

ticular emphasis on those that are important in biology. To

achieve this, the program is self-contained and has been

designed to be versatile, extensible, portable, and efficient.

CHARMM strikes a balance between general efficiency (the

ability of the end user to easily set up, run, and analyze a pro-

ject) and extensibility/versatility (the ability of the program to

support new implementations and the use of many methods and

approaches). This section provides an introduction to some gen-

eral aspects of the CHARMM program and its use, including the

essential elements of a typical CHARMM project. In what fol-

lows, detailed descriptions are given of most of the program’s

features.

II.A. Outline of a Generic CHARMM Project

A typical research project with CHARMM can be described in

very general terms based on the information flow in the pro-

gram, which is schematically illustrated in Figure 1. The user

begins a project by first setting up the atomic model representing

the system of interest (see also Section IX.A.). This consists of

importing the ‘‘residue’’ topologies file (RTF) and force field pa-

rameters (PRM), generating the ‘‘protein’’ structure file (PSF),

and assembling a complete configuration (coordinates) of all the

atoms in the system; the quotes around ‘‘residue’’ and ‘‘protein’’

indicate that the same (historical) notation is used when the pro-

gram is applied to molecules in general. For molecules and moi-

eties that have been parameterized, such as proteins, nucleic

acids, and lipids, standard CHARMM PRM and RTF files can

be used, and the setup procedure is straightforward if most of

the coordinates are known. For molecules not included in the

standard libraries, CHARMM is designed to allow for the use of

a virtually unlimited variety of additional molecular topologies

and force field parameters. (The available force fields are dis-

cussed in Section III.) For calculations involving multiple copies

of a structure, such as reaction path calculations in which the

coordinates of the two end structures are derived from X-ray

crystallographic data, consistency of atom labels is required

across all of the copies, particularly for chemically equivalent

atoms (e.g., Cd1 and Cd2 of Tyr). CHARMM provides a set of

general tools for facilitating the setup and manipulation of the

molecular system (e.g., coordinate transformations and the con-

struction of missing coordinates; Sections IX.B. and C.) and for

imposing a variety of constraints (Section V.B.) and restraints

(Section III.F.) on the system, where appropriate; restraints

allow changes in the property of interest with an energetic pen-

alty, while constraints fix the property, usually to user-specified

values. The user can specify a number of options for the calcula-

tion of nonbonded interactions and can choose to impose any of

a number of boundary conditions on the system (Section IV). To

carry out the calculations in an acceptable length of real time,

the user must consider tradeoffs in accuracy/complexity versus

Figure 1. Diagram depicting the general scheme of the information

flow in a CHARMM project. Information from data and parameter

files (top row cylinders) and the input file (second row trapezoid) is

first used to fill CHARMM data structures, which are then used by

the energy routines and related modules (some of which are listed

in the central grey box) to calculate the energy and its derivatives.

This information is then used by various CHARMM modules for

production calculations (second row from the bottom), which gener-

ate data in output files or internal data structures (bottom row) that

are analyzed to obtain final results. Key: cylinders: data files; trape-

zoid: input file; white rectangles: data structures; shaded rectangles:

CHARMM functionalities/modules; PDB: protein data bank; COOR,

PSF, and PARA: internal CHARMM data structures for system

coordinates, system topology/connectivity (PSF), and energy func-

tion parameters, respectively; NB energy: nonbonded energy; QM/

MM: combined quantum mechanical/molecular mechanical methods;

PME: Particle-Mesh Ewald summation method; LRC: long-range

corrections for truncated van der Waals interactions; Impl solv:

implicit solvation models; PBEQ: PB electrostatics module; Ext

elec: Extended electrostatics; CMAP: backbone dihedral angle cor-

rection term for all-atom protein representation; Pol mod: polariz-

able models; Pathways: reaction pathway calculations; FE estimates:

methods for estimating free energy differences.
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efficiency (Section XII) when selecting the model to be

employed in the calculations; in addition, he or she may need to

use a parallel compilation of the code or to utilize time-saving

features such as lookup tables (Section X). There are currently

two Web-based interface utilities that can be used to facilitate

the setup phase of a CHARMM project, CHARMM-GUI25 and

CHARMMing.26

The project may require a preproduction stage: e.g., for an

MD simulation, the usual procedure is to minimize the system

structure (often obtained from crystallographic or NMR data), to

heat the system to the desired temperature, and then to equili-

brate it. Once this is done, the project enters the production

stage, during which the atomic conformation of the system may

be refined, explored, and sampled by the application of various

computational procedures. These procedures may consist, among

other possibilities, of performing energy minimization, propagat-

ing MD or Langevin dynamics trajectories, sampling with

Metropolis Monte Carlo or grid-based search algorithms, obtain-

ing thermodynamic free energy differences via free energy per-

turbation computations, performing transition path sampling, or

calculating normal modes of vibrations. With such methodolo-

gies, it is possible to simulate the time evolution of the molecu-

lar system, optimize, and generate conformations according to

various statistical mechanical ensembles, characterize collective

motions, and explore the energy landscape along particular reac-

tion pathways. Some computational techniques (e.g., so-called

‘‘alchemical’’ free energy simulations) include the consideration

of ‘‘unphysical’’ intermediate states to improve the calculation

of physical observables, including the free energy, entropy, and

enthalpy change due to a mutation or conformational transition.

These algorithms and methods, which are central to many

theoretical studies of biological macromolecules and other

mesoscopic systems, are discussed in Sections V, VI, and VII.

Although several key quantities are normally monitored

during the production stage of a project, additional system

properties may have to be determined by postprocessing the

data—e.g., to calculate free energy changes from the coordi-

nates or diffusion coefficients from the velocities saved during

one or more MD trajectories. These derived quantities, whose

calculation is described in Section VIII, may include time

series, correlation functions, or other properties related to

experimental observables. Finally, the advanced CHARMM

user in some cases will have extended the program’s function-

ality in the course of carrying out his project, either by creat-

ing CHARMM scripts (Section II.C.), writing external code as

an adjunct, utilizing internal ‘‘hooks’’ to the CHARMM

source code (Section IX.A.), or directly modifying one or

more source code modules. After such developmental code

has been made to conform to CHARMM coding standards and

tested, it should be submitted to the CHARMM manager so as

to be considered for inclusion in future distributions of the

program (Section XI).

II.B. Functional Multiplicity of CHARMM

An important feature of CHARMM is that many specific compu-

tational tasks (e.g., the calculation of a free energy or the deter-

mination of a reaction pathway) can be accomplished in more

than one way. This diversity has two major functions. First, the

best method to use often depends on the specific nature of the

problem being studied. Second, within a given type of problem

or method, the level of approximation that achieves the best bal-

ance between accuracy requirements and computational resour-

ces often depends on the system size and complexity. A typical

example arises in the class of models that are used to represent

the effect of the surrounding solvent on a macromolecule. The

most realistic representation treats the solvent environment by

explicitly including the water molecules (as well as any counter

ions, crystal neighbors, or membrane lipids, if they are present),

and imposing periodic boundary conditions (PBC), which mimic

an infinite system by reproducing the central cell7,8 (see section

IV.B.). Systems varying from tens to even hundreds of thou-

sands of particles can be simulated with such all-explicit-atom

models for hundreds of nanoseconds using currently available

computational resources, such as large, distributed memory

clusters of nodes and parallel program architectures. However,

a drawback of treating solvated systems in this way is that

most of the computing time (often more than 90%) is used for

simulating the solvent rather than the parts of the system of

primary interest. Consequently, an alternative approach is often

used in which the influence of the solvent is incorporated

implicitly with an effective mean-field potential (i.e., without

the inclusion of actual water molecules in the calculation).

This approach can greatly reduce the computational cost of a

calculation for a protein relative to the use of explicit solvent,

often by a 100-fold or more, and captures many of the equilib-

rium properties of the solvent. However, it introduces approxi-

mations, so that hydrodynamic and frictional solvent effects, as

well as the role of water structure, are usually not accounted

for in the implicit solvent approach. A variety of implicit sol-

vent models, with differing accuracy and efficiency profiles,

are available in CHARMM; a detailed discussion can be found

in Section III.D. An intermediate approach between all-atom

PBC simulations and implicit solvent models involves simulat-

ing only a small region explicitly in the presence of a reduced

number of explicit solvent molecules, while applying an effec-

tive solvent boundary potential (SBP) to mimic the average

influence of the surrounding solvent.27–29 The SBP approach is

often advantageous in simulations requiring an explicit, atomic

representation of water in a limited region of the system—e.g.,

in the study of a reaction taking place in the active site of a

large enzyme.30 The choice of solvent representation for a pro-

ject thus depends on several factors, including the accuracy

requirements of the calculation, the type of data being sought,

the system size, and the computational resources and (real)

time available.

II.C. The CHARMM Scripting Language

Although CHARMM can be run interactively, as is often done

when the CHARMM graphics facility (GRAPHX) is being used,

intensive computational projects are normally executed in batch

mode through the use of input files (see Fig. 2). A set of com-

mand structures, including GOTO, STREam, and IF-ELSE-ENDIf
structures, corresponding to the respective control-flow state-

ments in source code, provide the basis for a powerful high-level
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scripting language that permits the general and flexible control

of complicated simulation protocols and facilitates the prototyp-

ing of new methods. The various functionalities of CHARMM

can easily be combined in almost any way using these command

structures in scripts to satisfy the requirements of a particular

project. In general, the order of CHARMM commands is limited

only by the data required by the command. For example, the

energy cannot be calculated unless the arrays holding the coordi-

nates, parameters, and structural topology, etc., have already

been filled (see Fig. 1). The command parser allows the substitu-

tion of numerous variables, which are set either internally by the

program during execution (for example, the current number of

atoms is accessible as ‘‘?natom’’), or externally by the user

(for example, a user may initially issue the command ‘‘SET
temperature 298.15,’’ and then substitute its value as ‘‘@temper-

ature’’ on any command line in the CHARMM input script).

All components of the most recent energy evaluation, as well as

the results of many other calculations, are available as internal

CHARMM variables (?identifier). The numerical values for the

variables can then be written to an external file, further proc-

essed, or used in control statements (‘‘IF ?ener.lt. 2500

THEN. . .’’). Arrays of these variables can also be constructed

(e.g., ‘‘segid1,’’ ‘‘segid2,’’ . . ., ‘‘segid10’’) and referenced

(@segid@@j). The parser has a robust interpreter of arithmetic

expressions (CALC), which can be used to evaluate algebraic

functions of these variables using basic mathematical operations,

including random number generation. Variable values may also

be passed to the program at the start of execution. In addition, it

is possible to call other CHARMM scripts as subroutines

(STREam . . . RETUrn), and to access operating system com-

mands (SYSTem); depending on the operating system,

CHARMM can use environment variables in filenames. In addi-

tion, the SCALar command facility performs arithmetic and sta-

tistical manipulations on internal CHARMM vectors (e.g., coor-

dinates, forces, charges, masses, user-defined arrays). CHARMM

variables and arrays can be read from (GET, SCALar READ) or

written to (ECHO, WRITe TITLe, SCALar WRITe) external files,
with or without header information, allowing, for example, easy

access from external graphing programs. The extent of printing

can be controlled with the PRNLevel and WRNLevel commands,

which take integers in the range of 210 (print no messages or

warnings) to 111 (print all). In general, values larger than 5

(default) will result in output that is not needed for production cal-

culations but may be useful for debugging and script-checking

purposes. For example, PRNLevel 8 will print the name of every

energy-based subroutine as it is called.

Since CHARMM input files can take the form of minipro-

grams written in the interpretive language of CHARMM com-

mands, common tasks can be coded in a general way at the script

level. As examples, standard input scripts have been written for

the addition of explicit solvent to a system, and a series of scripts

has been developed that automates the setup of the initial configu-

ration for a membrane–protein MD simulation (see Fig. 3).31–33 It

is also possible to implement complex methods and simulation

protocols at the level of the input file without changing the source

code. For example, the Random Expulsion method34 has been

implemented in this way in a study of ligand escape from a nu-

clear receptor35 (see Fig. 4); see also Blondel et al.36 Another

example is the development and parameterization of a coarse-

grained model of an amphipathic polypeptide which was used to

investigate the kinetics of amyloid aggregation.37 The flexibility

of the scripting language is such that one could implement

Metropolis Monte Carlo sampling in a few lines directly from the

input files (though this would run less efficiently than the dedi-

cated MC module). In addition, the scripting language is used

extensively when performing the calculations required for the

optimization of force field parameters (see next section).

III. Atomic Potential Energy Function

The relationship between structure and energy is an essential

element of many computational studies based on detailed atomic

models. The potential energy function, by custom called a force

Figure 2. CHARMM input file for an MD simulation of BPTI and a

simple analysis of the resulting trajectory. This is similar in form to

that used in the first MD simulation of a protein.4 The example uses

the CHARMM22 all-hydrogen force field, with topology descriptions

for standard amino acids, and the interaction parameters in the text files

‘‘top_all22_prot.inp’’ and ‘‘par_all22_prot.inp,’’ respectively. A PDB

file is used to provide the amino acid sequence and the atomic coordi-

nates; depending on the source of the PDB file, some manual editing

may be required. Coordinates for hydrogen atoms are constructed using

the HBUILD algorithm, SHAKE constraints are applied to all bonds,

and the dynamics run is started at 35 K with heating in 50 K incre-

ments at 0.2 ps intervals to a final temperature of 285 K. Specifications

for the calculation of nonbonded interactions are also given on the

dynamics command line. Coordinates are saved every 100 steps to a

binary file, which is reopened after the simulation and used to compute

the average structure and RMS fluctuations. Other examples can be

found at www.charmm.org.
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field, is used to calculate the potential energy of the system and

its derivatives from the coordinates corresponding to the struc-

ture or conformation. It has two aspects: the mathematical form

and the empirical parameters. In CHARMM, the topology (RTF)

and parameter (PRM) files (see Fig. 1), along with the polymer

sequence, allow the potential energy function to be fully defined.

First derivatives of the potential energy are used to determine

the atomic forces, which are required for MD simulation and

energy minimization. Second derivatives of the potential energy,

which are required for the calculation of vibrational spectra and

for some energy minimization algorithms, are also available. In

a program like CHARMM, which is undergoing continuous

development, changes in the force field and the rest of the code

are often linked and developments in both made in concert.

Because force fields are approximations to the exact potential

energy, they are expected to improve over time. The goals of

force field development involve at least three factors; they are

accuracy, breadth, and speed. Accuracy can be defined as the

extent to which calculations using a force field can reproduce

experimental observables. Breadth refers to the range of moi-

eties, molecules, and systems to which a force field can be

applied at the required level of accuracy. Speed is the relative

efficiency of calculations using one force field over another, all

else being equal; this often depends largely on the level of detail

of the models, although the form of implementation can also

have a role. In addition, the introduction of improvements to a

given force field must be balanced by the need for stability of

the force field (i.e. constancy of the form and parameters) over

time. This is particularly true of accuracy gains: while improved

accuracy in a given force field may be desired, continual change

would make comparison of results from different versions of the

force field problematic. In CHARMM, there have been continual

force field developments over the years, many of which are dis-

cussed, including the development of force fields based on more

detailed atomic representations (e.g., all atom, polarizable) and

applicability to more molecular types (e.g. DNA, carbohydrates,

lipids). At the same time, an effort has been made not to

change validated and well-tested force fields, thereby facilitat-

ing comparison of results from studies performed at different

times and in different laboratories. Notably, the only modifi-

cation to the protein part of the all-atom fixed-point-charge

CHARMM force field38 since May 1993 has been the addition

of a dihedral correction term (see Section III.C. later,

CMAP); the nucleic acid part of this force field39–41 has

remained unchanged since 1998.

III.A. Molecular Mechanics Force Fields

The general form of the potential energy function most com-

monly used in CHARMM for macromolecular simulations is

based on fixed point charges and is shown in eq. (1) (see also

Brooks et al.22 and Section IX.A.).

Figure 3. The KcsA K1 channel (helical ribbons) embedded in an

explicit dipalmitoyl phosphatidylcholine (DPPC) phospholipid mem-

brane (stick figures; fatty acids are white and head groups are red,

green, and white) bathed by a 150 mM KCl aqueous salt solution (blue

and green spheres represent potassium and chloride ions, respectively,

and water molecules outside the membrane are shown in blue). The

simulation system, consisting of 40,000 atoms, was used to compute a

multi-ion PMF governing ion conduction33 through the channel and to

determine the sources of its ionic selectivity723 (from Bernèche and

Roux33).

Figure 4. Four different (A–D) ligand escape pathways (shown as

grey spheres along black guiding lines) identified using Random

Acceleration Molecular Dynamics35 in the ligand binding domain of

the retinoic acid receptor. Helices are shown as ribbons, and the ret-

inoic acid ligand in the bound initial state is shown as red and gold

spheres (from Carlsson et al.35).
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The potential energy, (U(~R)), is a sum over individual terms

representing the internal and nonbonded contributions as a func-

tion of the atomic coordinates. Internal terms include bond (b),
valence angle (h), Urey–Bradley (UB,S), dihedral angle (u),
improper angle (x), and backbone torsional correction (CMAP,

u, w) contributions, as shown in eq. (1). The parameters Kb, Ku,

KUB, Kh, and Kx are the respective force constants and the vari-

ables with the subscript 0 are the respective equilibrium values.

All the internal terms are taken to be harmonic, except the

dihedral angle term, which is a sinusoidal expression; here n is

the multiplicity or periodicity of the dihedral angle and d is the

phase shift. The all-atom implementations of the CHARMM

force field include all possible valence and dihedral angles for

bonded atoms, and the dihedral angle term about a given bond

may be expanded in a Fourier series of up to six terms. Most

commonly, one dihedral angle term is used, though two or more

have been introduced in some cases. In addition, for the protein

main chain, a numerical correction term, called CMAP, has been

implemented (see later). For three bonded atoms A��B��C, the

Urey–Bradley term is a quadratic function of the distance, S,
between atoms A and C. The improper dihedral angle term is

used at branchpoints; that is, for atoms A, B, and D bonded to a

central atom, C, the term is a quadratic function of the (pseudo)-

dihedral angle defined by A��B��C��D. Both the Urey–Bradley

and improper dihedral terms are used to optimize the fit to

vibrational spectra and out-of-plane motions. In the polar hydro-

gen models (models in which CH3, CH2, and CH groups are

treated as single extended atoms; see later), the improper dihe-

dral angle term is also required to prevent inversion of chirality

(e.g., about the Ca atom in proteins). Although the improper di-

hedral term is used very generally in the CHARMM force fields,

the Urey–Bradley term tends to be used only in special cases.

Nonbonded terms include Coulombic interactions between

the point charges (qi and qj) and the Lennard–Jones (LJ) 6–12

term, which is used for the treatment of the core-core repulsion

and the attractive van der Waals dispersion interaction. Non-

bonded interactions are calculated between all atom pairs within

a user-specified interatomic cutoff distance, except for covalently

bonded atom pairs (1,2 interactions) and atom pairs separated by

two covalent bonds (1,3 interactions). The relative dielectric

constant, e, is set to one in calculations with explicit solvent,

corresponding to the permittivity of vacuum, e0. In addition, the

electrostatic term can be scaled using other values for the dielec-

tric constant or a distance-dependent dielectric; in the latter, the

electrostatic term is inversely proportional to rij
2, the distance

between the interacting atoms squared. Expressions for e used

for implicit solvent model calculations are discussed in Section

III.D. CHARMM also contains an explicit hydrogen bonding

term, which is not used in the current generation of CHARMM

force fields, but remains as a supported energy term for the pur-

poses of facilitating model development and hydrogen bonding

analysis.42 In the LJ term, the well depth is represented by emin
ij ,

where i and j are the indices of the interacting atoms, rij is the

interatomic distance, and Rmin
ij is the distance at which the LJ

term has its minimum. Typically, emin
ii and Rmin

i are obtained for

individual atom types and then combined to yield emin
ij and Rmin

ij

for the interacting atoms via a standard combination rule. In the

current CHARMM force fields, the emin
ij values are obtained via

the geometric mean ðemin
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emin

ii emin
jj

q
Þ and Rmin

ij via the arith-

metic mean, Rmin
ij 5 (Rmin

i 1 Rmin
j )/2. Other LJ combining rules

are also supported, e.g., Rmin
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rmin

i Rmin
j

q
Þ, allowing for the

use of alternative force fields in CHARMM (see later). Separate

LJ parameters and a scaling factor for electrostatics can be used

for the nonbonded interactions between atoms separated by three

covalent bonds (1,4 interactions). The Buckingham potential43

has recently been added as an alternative to the simple LJ for

treating the core repulsion. The Morse potential,44 often used for

bond-breaking, is also implemented.

The simple form for the potential energy used in eq. (1) rep-

resents a compromise between accuracy and speed. For biomole-

cules at or near room temperature, the harmonic representation

is generally adequate, though approximate, and the same holds

true for the use of the LJ potential for the van der Waals inter-

actions. However, alternative force fields with additional correc-

tion terms are available in CHARMM (Section III.B.) and can

be used to check the results obtained with eq. (1). The earliest

force field in CHARMM was based on an extended-atom (united

atom) model, in which no hydrogen atoms were included explic-

itly. The omitted hydrogens were treated instead as part of the

atom to which they were bonded.45,46 These ‘‘extended atom’’

force fields typically required the explicit hydrogen bonding

term mentioned earlier. A significant advance beyond the early

models was based on the finding that the distance and angle

dependencies of hydrogen bonds could be treated accurately by

the LJ and electrostatic terms alone if the so-called polar hydro-

gens (OH and NH) were treated explicitly.47 This eliminated the

need for the inclusion of explicit hydrogen bonding terms and

led to the creation of PARAM19,48 called ‘‘the polar hydrogen

model’’ for simulations of proteins. This model, which was first

developed in the mid 1980s47 is still widely used, particularly in

simulations of proteins with an implicit treatment of the solvent

(Section III.D.).

All-atom representations are the basis of the present genera-

tion of CHARMM force fields and were designed for simula-

tions with explicit solvent. In these force fields, an effort was

made to optimize the parameters using model compounds repre-

sentative of moieties comprised by the macromolecules.49 Test-

ing was done against a variety of experimentally determined

structural and thermodynamic properties of model compounds

and macromolecules, augmented by QM calculations. A balance
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of polar interactions (e.g., hydrogen bonds) between protein–

protein, protein–water, and water–water interactions was main-

tained in the parameterization. CHARMM uses a slightly modi-

fied form of the TIP3P water model,50 which includes LJ param-

eters for the hydrogens as well as the oxygen.48,51 The properties

of the model are not significantly altered,52–54 because the

hydrogens (rmin 5 0.2245 Å) are well inside the van der Waals

spheres of the oxygens (rmin 5 1.7682 Å, O��H bond length 5

0.9572 Å). The modification was introduced to avoid singular-

ities in the use of integral equations for representing the sol-

vent55; it is not important for explicit-solvent MD simulations.

Currently, the all-atom models in CHARMM include the

CHARMM22 force field for proteins,56 the CHARMM27 force

field for nucleic acids,39,41 and force fields for lipids.57–59 A lim-

ited set of parameters for carbohydrates is available,60 with a

more extensive set under development61 (Brady, J. W.; Pastor,

R.W.; MacKerell, A.D., Jr.; work in progress).

These force fields have been designed to be compatible,

allowing for studies of heterogeneous systems. The nucleic acid

and lipid force fields are significant improvements over earlier

all-atom models produced in the 1990s62,63; the gains were

achieved through extensive testing with macromolecular simula-

tions and improved QM benchmarks.59 In addition, force field

parameters are available for a variety of modified protein and

nucleic acid moieties and prosthetic groups.41,64,65 Moreover, a

description of the appropriate methods for extending the

CHARMM all-atom force fields to new molecules or moieties

has been published,49 and tools for carrying out this type of

extension are available via the CHARMM Web page at http://

www.charmm.org. The all-atom CHARMM force fields, with a

few improvements described later, have been applied to many

different systems and shown to be adequate for quantitative

studies (e.g., free energy simulations). Separately, an extended

version of the CHARMM all-atom force fields for the treatment

of candidate drug-like molecules is currently under development.

Combined with a flexible parameter reader and automated RTF

generation, this ‘‘generalized’’ force field will be particularly

useful for screening of drug candidates (Brooks, B. R.; MacKer-

ell, A. D., Jr.; work in progress).

III.B. Additional Supported Force Fields

Access to multiple, highly optimized, and well-tested force fields

for simulations of biological macromolecules is useful for

assessing the robustness of the computational results. In addition

to the force fields developed specifically for CHARMM, ver-

sions of the AMBER nucleic acid, and protein force fields,66,67

the OPLS protein force fields68 with the TIP3P or TIP4P water

models,50,69 and the nucleic acid force field from Bristol-Myers

Squibb70 have been integrated for use with other parts of the

CHARMM program. The SPC,71 SPC/E72, and ST273 water

models are also available. A recent comparison of simulations

with the CHARMM22, AMBER, and OPLS force fields showed

that the three models give good results that are similar for the

structural properties of three proteins.69 Since that study, the

CHARMM force field has been improved by adding a spline-

based 2D dihedral energy correction term (CMAP) for the pro-

tein backbone (see Section III.C.).74 For the free energy of

hydration of 15 amino acid side chain analogs, the

CHARMM22, AMBER, and OPLS force fields yielded compara-

ble deviations (of about 1 kcal/mol) from the experimental val-

ues.75,76 A simulation of the conformational dynamics of the

eight principal deoxyribo and ribonucleosides using long

explicit-solvent simulations showed that the CHARMM27 force

field yields a description in agreement with experiment and pro-

vides an especially accurate representation of the ribose

moiety.77 This study also details a comparison of simulations

using the CHARMM27 and AMBER nucleic acid force fields,

performed with CHARMM. A simulation study described by

Reddy et al.78 compares the different force fields available in

CHARMM for B-DNA oligomers. In addition, CHARMM has

been shown to yield quantitative agreement with NMR imino

proton exchange experiments on base opening.79–81

CHARMM also includes the Merck Molecular Force Field

(MMFF)82,83 and the Consistent Force Field (CFF).84,85 These

force fields use so-called ‘‘Class II’’ potential energy functions

that differ from that in eq. (1) by the addition of cross terms

between different internal coordinates (e.g., terms that couple

the bond lengths and angles) and alternative methods for the

treatment of the nonbonded interactions. The CFF force field is

based on the early force field of Lifson and Warshel.86 The

MMFF force field is specifically designed to be used within the

CHARMM program for the study of a wide range of organic

compounds of pharmaceutical interest. CHARMM is able to

read PDB, MERCK, or MOL2 formatted files, including MOL2

databases, so as to support large-scale virtual drug screening.

Also, a script is available that transforms the MMFF parameter-

ization for a given molecule so as to be consistent with the

standard CHARMM force field.

III.C. Recent Extensions and Current Developments

Improved Backbone Dihedral Angle Potential

An important advance for the accurate calculation of the internal

energies of biomolecules is the introduction of a multidimen-

sional spline fitting procedure.74,87 It allows for any target

energy surface associated with two dihedral angles to be added

to the potential energy function in eq. (1). The use of the spline

function, referred to as CMAP, corrects certain small systematic

errors in the description of the protein backbone by the all-atom

CHARMM force field. The CMAP correction, which is based on

ab initio QM calculations, as well as structure-based potentials

of mean force, significantly improves the structural and dynamic

results obtained with MD simulations of proteins in crystalline

and solution environments.74,88 Additional simulations have

shown improved agreement with N��H order parameters as

measured by NMR.89 The spline function is expected to be gen-

erally useful for improving the representation of the internal

flexibility of biopolymers when the available data indicate that

corrections are required.90

Treatment of Induced Polarization

A refinement in the fixed charge distribution of the standard

CHARMM biomolecular force field is the incorporation of the
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influence of induced electronic polarization. Polarization is

expected to have particularly important effects on the structure,

energetics, and dynamics of systems containing charged (e.g.,

metal ions) or highly polar species. There is also an indication

that polarization effects can be significant in accurately model-

ing the nonpolar hydrocarbon core of lipid membranes.91,92

Although the physics of polarization is well understood, there

are problems associated with introducing it into biomolecular

simulations. They concern the choice of a suitable mathematical

representation, the design of efficient computational algorithms,

and the reparameterization of the force field. The three most

promising representations are the fluctuating charge model intro-

duced by Rick and Berne,93 which is based on the charge-equal-

ization principle,94 the classical Drude oscillator model (also

called the Shell model),95 and the induced point dipole

model.96–98 Patel and Brooks99 have developed and tested a

polarizable CHARMM force field for proteins based on a

charge-equalization scheme (CHEQ module). It is currently

being used in molecular simulations to explore the role of elec-

tronic polarizability in proteins and peptides in solution,99,100 at

phase boundaries in alcohols,101,102 and alkanes,103 and in the

conductance of ion channels.92 MacKerell, Roux and coworkers

are exploring a polarizable model based on the classical Drude

oscillator methods104 and have developed the SWM4-DP polar-

izable water model,105,106 which has been used to simulate DNA

in solution.107 A recent parameterization of alkanes,108 alco-

hols,109,110 aromatics,111 ethers,112 amides,113 and small ions114

demonstrates the ability of Drude oscillator-based polarizabilities

to reproduce a set of experimental observables that are incor-

rectly modeled by force fields with fixed charges. Examples

include the dielectric constants of neat alkanes,108 water–ethanol

mixtures with concentrations that vary over the full molar frac-

tion range,109,113 and liquid N-methylacetamide, as well as the

excess concentration of large, polarizable anions found at the

air–water interface.115–118 Gao and coworkers have used polariz-

able intermolecular potential functions, PIPFs, that model elec-

tronic polarization with an induced point dipole approach to

study polarization effects in a series of organic liquids including

alkanes, alcohols, and amides96,98,119; the results obtained with

the induced-dipole model were found to be in good accord with

those obtained from combined QM/MM simulations in which

polarization effects were introduced with QM calculations.

In all the three induced polarization methods, the polarization

is modeled as additional dynamical degrees of freedom that are

propagated according to extended Lagrangian algorithms. This

treatment avoids the need to introduce computationally ineffi-

cient approaches based on iterative self-consistent field (SCF)

methods.104,120 Efforts are currently underway to obtain com-

plete sets of protein, nucleic acid, and lipid parameters for these

polarizable force fields.

The polarizable models described here represent ongoing

combined code and parameter developments that will be incor-

porated into the next generation of CHARMM force fields. Once

this has been accomplished, it will be possible to carry out addi-

tional comparative studies (i.e., simulations with and without

polarization) to determine the types of problems for which the

use of such polarizable force fields is important.

III.D. Implicit Solvent Methods

Although MD simulations in which a large number of solvent

molecules are included provide the most detailed representation

of a solvated biomolecular system (see later), incorporating the

influence of the solvent implicitly via an effective mean-field

potential can provide a cost-efficient alternative that is suffi-

ciently accurate for solving many problems of interest. Although

implicit solvent simulations have computational requirements

(CPU and memory) that can be close to those for vacuum calcu-

lations, they avoid many of the artifacts present in the latter,

such as large deviations from crystal structures, excessive num-

bers of salt bridges, and fluctuations that are too small relative

to crystallographic B factors. The reduction in computer time

obtained with implicit models, relative to the use of an explicit

solvent environment, can be important for problems requiring

extensive conformational searching, such as simulations of pep-

tide and protein folding121–123 and studies of the conformational

changes in large assemblies.122,124 Implicit solvent approaches

allow the estimation of solvation free energies while avoiding

the statistical errors associated with averages extracted from

simulations with a large number of solvent molecules. Examples

of this type of approach are the MM/GBSA or MM/PBSA

approaches to approximate free energies,125 pKa calculations for

ligands in a protein environment,126–129 and scoring protein con-

formations in ab initio folding or homology modeling stud-

ies.130–133 An implicit solvent also permits arbitrarily large

atomic displacements of the solute without solvent clashes, lead-

ing to more efficient conformational sampling in Monte Carlo

and grid-based algorithms. Recently developed implicit mem-

brane models, by analogy with implicit water (or other solvent)

models, facilitate the study of proteins embedded in mem-

branes.134–139 Implicit solvent representations are also useful as

conceptual tools for analyzing the results of simulations gener-

ated with explicit solvent molecules and for better understanding

the nature of solvation phenomena.140,141 Finally, the instanta-

neous solvent relaxation that is inherent in implicit solvation

models is useful for the study of macromolecular conformational

changes over the ‘‘simulation-accessible’’ nanosecond or shorter

timescales, as in forced unfolding MD simulations of proteins,142

versus the experimental microsecond to millisecond timescales.

Treating the solvent explicitly in this type of calculation can

introduce artifacts because of possible coupling between the sol-

vent relaxation, which occurs on the nanosecond timescale, and

the sped-up conformational change.

Several implicit solvent approaches are available in

CHARMM, which effectively extend the number of available

force fields in the program. The implicit solvent models differ

both in their theoretical framework (e.g., the surface area-based

empirical solvation potentials versus the approximate continuum

models based on generalized Born theory) and in their imple-

mentation. A comparison of five of the effective (implicit sol-

vent) free energy surfaces for three peptides known to have sta-

ble conformations in solution is presented by Steinbach.143 Good

agreement between results obtained with implicit and explicit

solvent has been observed for the potential of mean force (PMF)

as a function of the end-to-end distance of a 12-residue pep-

tide144 and as a function of the radius of gyration of a six-resi-
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due peptide.145 The implicit solvent methods currently available

in CHARMM are outlined below. A comparison of the speeds

of several of the methods with vacuum and explicit solvent cal-

culations is also presented.

Solvent-Accessible Surface Area Models

One of the earliest and simplest implicit solvent models imple-

mented in CHARMM, and currently the fastest one in the pro-

gram, is based on the solvent-accessible surface area (SASA).146

Models of this kind make the assumption that the solvation free

energy of each part of a molecule is proportional to its SASA—

i.e., they approximate the contribution arising from solute interac-

tions with the first solvation shell by use of a term that is a sum of

all of these individual ‘‘self-energy’’ contributions. In the original

formulation by Eisenberg and coworkers,147,148 the solvation free

energy term was expressed as GH 5
P

Hifi 1 Ci, where Hi is the

hydrophobicity of an individual protein residue, fi is the fraction

of the residue’s surface that is available to solvent, the Ci’s are

constants, and the sum is over all residues in the molecule. The

method was subsequently refined by the introduction of atomic

solvation parameters (ASPs), which are the atomic analogues of

the Hi factors, and the solvation energy term was written as a sum

over individual atomic contributions (without the constant

terms).147,148 This form of the SASA model has largely replaced

the Wesson and Eisenberg formulation, although the latter is still

available in CHARMM (along with a derivative form for mem-

branes). The current CHARMM implementation of the SASA

model149 uses the polar hydrogen (PARAM19) potential energy,

has two ASPs, calculates the SASA analytically150 and includes

approximate solvent shielding effects for the charges. One ASP

value in the CHARMM SASA model is negative, favoring the

direct solvation of polar groups, and the other is positive, approxi-

mating the hydrophobic effect on nonpolar groups.149 The two pa-

rameters were optimized to be consistent with the simplified treat-

ment of electrostatic interactions based on the neutralization of

charged groups151 and the use of distance-dependent dielectric

screening (with e(r) 5 2r). The charge neutralization and dis-

tance-dependent dielectric address, in an approximate way,

solvent shielding of the electrostatic interactions that is not

accounted for in the simpler SASA-based solvation models. How-

ever, in the present approach the shielding does not depend on the

environment (i.e., given the same interatomic distance, a pair of

charges in the interior of a protein feels the same screening as a

pair of charges at the protein surface) so that it is most accurate

for peptides and small proteins, where most of the atoms are on or

near the surface. The change in the SASA, as a function of the

system coordinates, can be used to obtain forces for minimization

and dynamics. In part because the surface area calculation is ana-

lytic and based on interatomic distances, the SASA model is fast

and has been shown to be useful in computationally demanding

problems, such as the analysis of interactions in icosahedral viral

capsids.152 The two-ASP SASA model has been used for investi-

gating the folding mechanism of structured peptides153–156 and

small proteins,157 as well as the reversible mechanical unfolding

of a helical peptide.158 Moreover, simulations of the early steps of

aggregation of amyloid-forming peptides using the SASA model

have provided evidence of the importance of side chain interac-

tions159,160 and elucidated the role of aggregation ‘‘hot-spots’’

along the polypeptide sequence.161 Because of the efficiency of

the two-ASP SASA model,149 most of the studies mentioned

involved simulations of several microseconds in length, which

have yielded adequate sampling of the peptide systems at equilib-

rium. A SASA model based on the all-atom representation is also

present in CHARMM as part of the RUSH module162 (see

CHARMM documentation).

Gaussian Solvation Free Energy Model (EEF1)

A related model, referred to as EEF1,151 combines an excluded-

volume implicit solvation model with a modified version of the

polar hydrogen energy function (PARAM19 atomic representa-

tion). The model is similar in spirit to SASA/ASP but does not

require the calculation of the SASA. In EEF1, as in the SASA/

ASP model, the solvation free energy is considered to be the

sum of contributions from the system’s constituent elements.

The solvation free energy of each group of atoms in the EEF1

model is equal to the solvation free energy that the same group

has in a reference (model) compound, minus the solvation lost

due to the presence of other protein groups around it (solvent

exclusion effect). A Gaussian function is used to describe the

decay of the solvation free energy density with distance. Group

contributions to the solvation free energy were obtained from an

analysis of experimental solvation free energy data for model

compounds.163,164 In addition to the solvent-exclusion effect, the

dielectric screening of electrostatic interactions by water is

accounted for by the use of a distance-dependent dielectric con-

stant and the neutralization of ionic side chains; the latter is

essential for the EEF1 model, and was also adopted in the two-

ASP SASA model.149,153 MD simulations with EEF1 are about

1.7 times slower than vacuum simulations but significantly faster

than most of the other solvation models in CHARMM (see

later). The model has been tested extensively. It yields modest

deviations from crystal structures in MD simulations at room

temperature and unfolding pathways that are in satisfactory

agreement with explicit solvent simulations. The model has been

used to discriminate native conformations from misfolded

decoys130 and to determine the folding free energy landscape of

a b-hairpin.165,166 Other studies include the exploration of par-

tially unfolded states of a-lactalbumin,167 a series of studies of

protein unfolding,142,168–170 the investigation of coupled unfold-

ing/dissociation of the p53 tetramerization domain,171 the identi-

fication of stable building blocks in proteins,172 an analysis of

the energy landscape of polyalanine,173 an analysis of the heat

capacity change on protein denaturation,174 the packing of sec-

ondary structural elements of proteins into the correct tertiary

structural folds,175 and calculations of the contributions to pro-

tein–ligand binding free energies.176 EEF1 has been used by

Baker and coworkers in successful protein–protein docking177

and protein design studies.178 An implicit membrane model

based on EEF1 is available in CHARMM.135 An updated param-

eterization based on PMF calculations for ionizable side

chains179 is referred to as EEF1.1.135 EEF1 has also been

adapted for use with the all-atom CHARMM 22 energy

function,180 but this formulation has not yet been extensively

tested.
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Screened Coulomb Potentials Implicit Solvent Model (SCPISM)

The SCPISM continuum model uses a screened Coulomb poten-

tial to describe solvent-shielded interactions, based on the Debye

theory of liquids.181,182 In the SCPISM model, the standard elec-

trostatic component of the force field (Coulomb interaction in
vacuo) is replaced by terms that describe both the screened elec-

trostatic interactions and the self-energy of each atom. Hydrogen

bonding modulation183 and nonelectrostatic solvent-induced

forces (e.g., hydrophobicity) are included in the recent version.

The current implementation in CHARMM can be used for

energy evaluations, minimization, and MD simulations. It has

recently been shown that the SCPISM model preserves the main

structural properties of proteins (of up to 75 amino acids) in

long ([35 ns) Langevin dynamics simulations, as well as hydro-

gen bond patterns of residues at the protein/solvent interface.88

For a 15,000-atom system, MD simulations with this method

(using an all-atom model) are approximately five times slower

than with EEF1 (which uses a polar hydrogen model representa-

tion).

Implicit Solvent with Reference Integral Site Model (RISM)

The RISM module in CHARMM implements the reference inter-

action site model.184 This is based on an approximate statistical

mechanical theory that involves the site–site Ornstein–Zernike

integral equation and makes possible the calculation of the aver-

age solvent radial pair correlation function around a molecular

solute. The calculated site–site radial distribution functions g(r)
and pair correlation functions c(r) can then be used to determine

quantities such as the PMF between two solvated molecules, and

the excess chemical potential of solvation of a solute in a sol-

vent. The method was first used to characterize the effect of sol-

vent on the flexibility of alanine dipeptide.55 The change in the

solvent g(r) on solvation can be determined, which allows for

the decomposition of the excess chemical potential into the

energy and entropy of solvation.185 Further development would

be required for the application of the method to larger peptides

and small proteins, which is now feasible given the availability

of fast computers.186

Poisson–Boltzmann (PB) Continuum Electrostatics

The PB equation provides the basis for the most accurate contin-

uum models of solvation effects on electrostatic interactions.

Thus PB models are used as the standards for other continuum

models, but have the drawback that they are computationally in-

tensive, though still less costly than the use of explicit solvent.

The linearized PB equation for macroscopic continuum media

has the form:

r � eðrÞ r/ðrÞð Þð Þ � jðrÞ2/ðrÞ ¼ �4pqðrÞ (2)

where / is the electrostatic potential and e, j and q are the spa-

tially varying dielectric constant, ionic screening, and atomic

charge density, respectively. This formulation is based on the

assumption that, at a given position in space, the polarization

density of the solvent and the local cationic and anionic den-

sities are linearly proportional to the local electric field and local

electrostatic potential, respectively. At physiologic ionic strength

and lower charge densities, the linear and nonlinear forms of the

PB equation give equivalent results187; use of the nonlinear

form, which is more computationally costly, is recommended in

cases where the charge density is too high for the linear approxi-

mation to hold. This can be true at low ionic strength for nucleic

acid systems. In the CHARMM program (PBEQ module), the

PB equation is solved numerically using an iterative finite-differ-

ence relaxation algorithm188,189 by mapping the system (i.e., e,
j, and q) onto a discrete spatial grid. The PBEQ module can

handle the linear and nonlinear forms of the PB equation, as

well as a partially linearized form inspired by the 3D-PLHNC

closure of Kovalenko and Hirata.190 For the linear PB model,

the electrostatic solvation free energy is calculated as

DGelec ¼
1

2

X
i

qi/rfðiÞ; (3)

where qi is the charge on particle i and /rf(i) is the reaction field

at the position of particle i (usually obtained by subtracting the

electrostatic potential in vacuum from that calculated with the

dielectric solvent environment). This can also be expressed as191

DGelec ¼
1

2

X
i;j

qiMrfði; jÞqj; (4)

where Mrf(i,j) is the reaction field Green function matrix. The

PBEQ module in CHARMM191,192 computes the electrostatic

potential and the solvation free energy using this approach. The

accuracy of continuum electrostatic models is sensitive to the

choice of the atomic radii used for setting the dielectric bound-

ary between the solute and the solvent. For accurate PB calcula-

tions with the PBEQ module, optimized sets of atomic protein

and nucleic acid Born-like radii have been determined using

MD simulations and free energy perturbation calculations with

explicit water molecules.192,193 Continuum electrostatic calcula-

tions with the optimized atomic radii provide an implicit solvent

approach that is generally useful; examples are the studies of

nucleic acids and their complexes with proteins194,195 and of

MM/PBSA calculations on kinase inhibitor affinities.196 The

PBEQ module also has a number of features that can be used in

electrostatic calculations related to biological membranes.32,197

In particular, it can be employed to calculate the transmembrane

potential profile and the induced capacitive surface charge corre-

sponding to a given transmembrane potential difference, which

is essential for examining conformational changes driven by an

electrostatic voltage difference across the membrane.197,198

In addition to the standard Dirichlet boundary conditions

(fixed potential on the edge of the grid), a number of options for

imposing alternative boundary conditions on the edge of the finite

grid are available; they include conducting boundary conditions

(zero electrostatic potential), periodic boundary conditions in

three dimensions, and planar periodic boundary conditions in two

dimensions. The latter are useful for calculations involving planar

membranes. The average electrostatic potential over user-speci-

fied parts of the system can also be calculated (PBAVerage sub-

command); this is used, for example, in charge-scaling proce-

dures. It is also possible to use the result from a coarse grid to set
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up the boundary conditions of a finer grid, focusing on a small

region of interest. The PBEQ module is not limited to the most

common applications of the finite-difference PB equation, which

involve determining the effective solvation of a solute in a given

conformation. An accurate method for calculating the analytic

first derivative of the finite-difference PB solvation free energy

with respect to the atomic coordinates of the solute (electrostatic

solvation forces) has also been implemented.191 It allows the

PBEQ module to be used in combination with several of the other

tools available in CHARMM for investigating the properties of

biological macromolecules (i.e., energy minimization, MD,

reaction path optimization, normal modes, etc.). Since the PB cal-

culation treats the effect of solvent only on the electrostatic inter-

actions, it is often combined with methods for estimating the

hydrophobic contribution. The simplest one approximates the

term as proportional to the SASA, but in recent years more

sophisticated approaches have been developed. For example,

AGBNP in the Impact program199 and PBSA in Amber200

account for both cavity and solute–solvent dispersion interactions.

Smooth ‘‘Conductor-Like Screening Model’’
(COSMO) Solvation Model

Solvation boundary element methods based on the COSMO201

model have proved to be stable and efficient. This model relies

on an electrostatic variational principle that is exact for a

conductor, and with certain corrections, provides useful, approxi-

mate results for many solvents over a broad range of dielectric

constants.202–204

For such a model, the solvent reaction field potential can be

represented as the potential arising from a surface charge distri-

bution that lies at the dielectric boundary. This allows study of a

two-dimensional surface problem instead of a three-dimensional

volume problem. An advantage is that it is often easier to refine

the discretization of the two-dimensional boundary element sur-

face than to increase the resolution of a three-dimensional grid

in a finite-difference PB calculation. In the COSMO approach,

the numerical solution of the variational problem involves the

discretization of the cavity surface into tesserae that are used to

expand the solvent polarization density from which the reaction

field potential is derived. A difficulty that can arise in the sur-

face discretization used in these methods involves ensuring con-

tinuity of the solvation energy and its derivatives with respect to

the atomic coordinates, which is critical for stable molecular

mechanics optimization procedures and dynamics simulations.

The smooth COSMO method developed by York and Karplus205

addresses this problem and provides a stable and efficient

boundary element method solvation model that can be used in a

variety of applications. The method utilizes Gaussian surface

elements to avoid singularities in the surface element interaction

matrix, and a switching function that allows surface elements to

smoothly appear or disappear as atoms become exposed or bur-

ied. The energy surface in this formulation has been demon-

strated to have smooth analytic derivatives, and the method has

been recently integrated into the semiempirical MNDO97206

program interfaced with CHARMM.207,208

The smooth COSMO method, like the COSMO method, has

some computational advantages (in both speed and memory

requirements) over the PB method that arise from the discretiza-

tion procedure. The convergence of the numerical solution in all

three of the methods depends on the resolution of the grids, and

in the case of the COSMO methods, the lower dimensionality of

the grid used to discretize the numerical problem leads generally

to increased computational efficiency and lower demands on

computer memory. However, the COSMO methods are less gen-

eral than the PB method in that the latter can treat spatially

varying dielectric constants and effects of ion concentration in a

more straightforward manner.

Generalized Born Electrostatics

Implicit solvent models based on the generalized Born (GB) for-

malism share the same underlying dielectric continuum model

for the solvent as the Poisson or PB methods. However, GB

theories replace the time-consuming iterative solution for obtain-

ing the electrostatic potential required in finite-difference PB

calculations in eq. (2) by the solvent-induced reaction field

energy as approximated by a pairwise sum over interacting

charges, qi,
209–213

DGelec
ep�[ew ¼ � 1

2

1

ep
� 1

ew

� �X
i;j

qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ aiaj expð�r2ij=FaiajÞ

q : (5)

In this expression ep, ew are the interior and exterior dielectric

constants, rij is the distance between atoms i and j, and ai is the

effective Born radius of atom i, which is chosen to match the

self-energy of charge i at its position in the system (i.e., a varies

with the position of the atoms). The empirical factor F modu-

lates the length-scale of the Gaussian term and typically ranges

from 2 to 10, with 4 being the most commonly used value.209

Equation (5) assumes that the shielded electrostatic interactions

arising in the dielectric environment can be expressed as a

superposition of pairwise terms. This is the so-called ‘‘pairwise

shielding approximation’’. The efficiency of the GB approach

lies in the possibility of estimating the effective atomic Born

radii using a computationally inexpensive scheme. For example,

the Coulomb field approximation assumes that the dielectric

displacement for a set of charges embedded in a low dielectric

cavity behaves like the Coulomb field of these charges in

vacuum,213,214 leading to the following expression for ai

1

ai
¼ 1

Ri
� 1

4p

Z
solute;r>Ri

1

r4
dV (6)

where Ri is usually the atomic van der Waals radius of atom i.
Many generalized Born theories approximate the volume inte-

gral, carried out over the entire solute cavity, by a discrete sum

of overlapping spheres211,212 or Gaussians.213 Alternative meth-

ods have also been devised to carry out the integration, with

moderate computational cost, either by reformulating the volume

integral into a surface integral215 or by directly using analytical

integration techniques borrowed from density functional

theory.134,216,217

Several implicit solvent schemes based on the pairwise

shielding approximation exist in CHARMM. The first to be

implemented in CHARMM was the Analytic Continuum Elec-
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trostatics (ACE) model developed by Schaefer and Karplus.213

This model is based on the Coulomb field approximation and

the pairwise summation utilizing Gaussian functions as described

earlier.213 Applications of the model include MD simulations

and studies of the folding of proteins and peptides.121,218 An

improved version of ACE, called ACE2, is now available and

should be used in most applications with the PARAM19 polar

hydrogen force field. Also implemented in CHARMM is a

‘‘standard’’ GB model following the formulation of Qiu et al.211

This approach utilizes a pairwise sum over atoms to provide

estimates of the atomic Born radii (solution to eq. 6 earlier).219

It is optimized for use with the PARAM 19 polar hydrogen

force field described earlier, with which it yields mean-absolute

errors of 1–2% in the calculated solvation energies when com-

pared with Poisson solutions using the same dielectric boundary.

This model, accessed in CHARMM via the GBORn command

(GENBORN preprocessor keyword), has been integrated with a

number of other methods, such as free energy perturbation cal-

culations and replicas. It has proven useful in folding studies of

peptides and proteins,220 the investigation of helix to coil transi-

tions,221 and binding free energy calculations.222

The description of the solvent boundary at the molecular sur-

face in the ACE and standard GB methods can lead to problems

that arise from the presence of microscopic, solvent-inaccessible

voids of high dielectric in the interior of larger biomolecules. One

approach used in PB calculations is to fill the voids with neutral

spheres of low dielectric constant.223 In an alternative approach,

the integral formulation described by eq. (6) can be evaluated

numerically with methods drawn from density functional

theory.216 This method can be extended with analytical approxi-

mations for the molecular volume or a van der Waals-based sur-

face with a smooth switching function similar to that used by Im

et al. in the context of the PB equation.191 The molecular volume

approximation is implemented in the Generalized Born/Molecular

Volume (GBMV) model,217 the smoothed van der Waals surface

in the GBSW model.134 These approaches provide results that are

comparable to ‘‘exact’’ continuum Poisson theory.224 However,

they are considerably more time-consuming than the simpler

models. The GBSW model is approximately five times as expen-

sive as corresponding vacuum simulations, and the GBMV model

is 6–10 times as expensive (see also next subsection). The GBMV

and GBSW models have been applied to protein–ligand interac-

tions,225 protein–protein and protein–DNA interactions,141 pH-

coupled MD127,129 and protein folding/scoring in structure predic-

tion.132 Key in improving the accuracy of these models have been

extensions beyond the Coulomb field approximation described in

eq. (6) earlier,216,217 which is exact only for a single charge at the

center of a spherical cavity.226 The FACTS model (fast analytical

continuum treatment of solvation) is a recently developed GB

method in which the effective Born radius of each atom is esti-

mated efficiently by using empirical formulas for approximating

the volume and spatial symmetry of the solvent that is displaced

by its neighboring atoms.227 Apart from the factor F in eq. (5),

the GB implementations in CHARMM involve empirical volume

parameters for the calculation of the Born radii in eq. (6). The

ACE model uses type-dependent atomic volumes derived by aver-

aging over high-resolution structures in the PDB,228 and a single

adjustable (smoothing) parameter. The value normally chosen for

this parameter (1.3) gives the best agreement between the solute

volume description underlying ACE--the superposition of Gaus-

sians-- and the solute cavity model that is used in the standard fi-

nite difference PB methods.

Currently, the focus in GB developments has begun to shift

away from matching PB results and toward reproducing explicit

solvent simulations and experimental data through reparameteri-

zation of the models.138,229 Recent examples demonstrate that

the resulting class of implicit solvent force fields can reproduce

folding equilibria for both helical and b-hairpin peptides, as

illustrated in Figure 5a for the folding of Trp-zip, a small helical

peptide.

Speed Comparison of Implicit Solvent Models

Since reducing the required computer time is one of the primary

reasons for the use of implicit solvent models, approximate tim-

ings obtained for small- to medium-sized systems are given in

Table 1. The fourth column lists the computational cost for each

model relative to a corresponding vacuum calculation using the

same system, cutoff distances, atomic representation, and condi-

tions. By this ‘‘intrinsic cost’’ measure, which gives an indica-

tion of the speed of the implicit solvent term calculation, per se,
the implicit models are all in the range of 1.7 to 10 times slower

than vacuum. As expected, the cost of the explicit water calcula-

tions (using periodic boundary conditions and particle mesh

Ewald summations; see Section IV.B.) is much greater than that

of the implicit models; i.e., explicit solvent calculations are

approximately 20–200 times slower than the corresponding vac-

uum calculations, depending on the size of the system, the num-

ber of water molecules used, and the atomic representation used

for the solute. Column 5 of the table lists the computational cost

for each model, using its recommended cutoff distances and

atomic representation, relative to a vacuum calculation on the

same system using an 8 Å cutoff and a polar hydrogen represen-

tation. By this ‘‘actual cost’’ measure, which relates the speeds

of the models when they are used as recommended (default pa-

rameters), the implicit models vary in speed by a factor of 50 or

more. These differences arise primarily from the fact that the

models employ different atomic representations (all-hydrogen vs.
polar hydrogen) and nonbonded cutoff distances (8 Å in SASA

vs. up to 20 Å in the others), in addition to having different

intrinsic speeds or costs. The polar-hydrogen model has approxi-

mately two times fewer atoms than the all-hydrogen model for

proteins, so that there are approximately four times fewer pair-

wise interactions in models 1 and 2 than in models 3–6. The

longer nonbonded cutoff distances for models 4–6 mean that

larger numbers of pairwise intramolecular protein interactions

are taken into account. The actual cost, rather than the intrinsic

cost, must be used to estimate the relative computer times that

will be required for calculations with the given models. For

example, MD simulations with the SASA model are up to 100–

200 times faster than explicit water simulations.

Implicit Membrane Models

In the same spirit as the implicit solvent (water) potentials,

implicit membrane representations reduce the required computer

time by modeling the membrane environment about a solute

1557CHARMM: The Biomolecular Simulation Program

Journal of Computational Chemistry DOI 10.1002/jcc



(often an embedded protein or peptide) as one or more continu-

ous distributions. Formulations based upon either PB theory

(GB-like models)230 or Gaussian solvation energy density distri-

butions (an EEF1-type model)135 have been developed. The first

GB/IM model was developed as an extension of the simple two-

dielectric form of the GB theory219 by splitting the integral in

eq. (6) into intramembrane and extramembrane parts.136 This

model has been shown to reproduce the positions of helices

within a biological membrane. The introduction of a smooth

switching function to describe the solute–solvent boundary134

and the reformulation of the integration schemes for eq.

(6)216,217 have led to the introduction of a GB model that per-

mits arbitrarily shaped low-dielectric volumes to be ‘‘embedded’’

in the high-dielectric solvent.231 This model has been developed

in the GBSW and GBMV modules, and it has been applied to

the simulation and folding of integral membrane peptides and

proteins232 with direct comparisons to measured properties from

solid-state NMR experiments137; it has also been used in studies

of the insertion of peptides into membranes233 and peptide asso-

ciation and oligomerization in membrane environments.234 Stud-

ies of the mechanism by which insertion of designed peptides

into membrane bilayers proceeds, as illustrated in Figure 5b,

demonstrate the utility of implicit models in the exploration of

membrane-mediated phenomena.

An EEF1-type model for implicit solvent and membrane

studies (IMM1)135 has been implemented in CHARMM. Like

EEF1,151 the method utilizes Gaussian functions to describe the

extent of burial of atoms in different regions (i.e., the aqueous

solvent versus the bilayer membrane). IMM1 has been extended

so as to account for the surface potential due to anionic lip-

ids,139 the transmembrane potential,235 and the treatment of

membrane proteins with an aqueous pore.236 It has been used to

obtain insights into the forces that drive transmembrane helix

association,180,237 calculate pH-dependent absolute membrane

binding free energies,238 and determine the voltage-dependent

energetics of alamethicin monomers.235

Figure 5. Combining replica-exchange molecular dynamics with implicit solvent. (a) Folding of the

Trp-zip peptide.229 A consistent parameterization of the CHARMM all-hydrogen force field and the

GBSW implicit solvent model was used, with 16 replicas in a temperature range of 270 to 550 K. The

left panel shows the distribution of potential energy values from the 270 K window. The right panel

provides a comparison of the most populated cluster from the simulations and the NMR-derived struc-

ture; the backbone RMSD between the two structures is 1 Å. (b) Implicit membrane/implicit solvent

replica-exchange molecular dynamics simulations233 of a designed 19-residue peptide, WALP-19. The

peptide inserts into the membrane via a mechanism involving the following steps: (1) migration to

the membrane-water interface as a partially unstructured peptide; (2) formation of helical structure

via D-hairpin conformations; (3) helical elongation through thermal fluctuations to �80% helical; and

(4) N-terminal insertion across the membrane.
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Determination of Ionization States

Accurately simulating the electrostatic properties of a protein

depends upon the correct determination of the charged state of all

ionizable residues. The ionization state of a residue is determined

by the free energy difference between its protonated and unproto-

nated forms at a given pH. This can be expressed in terms of the

change in pKa (DpKa) of the amino acid in a protein relative to

the intrinsic pKa of the amino acid in solution. Correspondingly,

the free energy of transfer of the charged amino acid from the sol-

vent to the protein environment is equal to the reversible work

required to ionize the side chain in the protein minus the work

needed to ionize it in an isolated peptide in bulk water.239

Although DpKa can also be calculated using free energy perturba-

tion with explicit solvent molecules (see Section VI), a PB or GB

treatment representing the solvent as a dielectric continuum usu-

ally offers a convenient and reasonably accurate approximation,

because the change in pKa tends to be dominated by electrostatic

contributions to the solvation free energy. The calculation of pKa

shifts can be done with the finite-difference PBEQ mod-

ule.191,192,240 Estimates of the pKa based on the PB equation can

be improved by introducing conformational sampling; e.g., calcu-

lated pKa shifts obtained by averaging over the coordinates from

an MD simulation (see Section VIII) are usually more accurate

than what is calculated with a single structure.240–243 In some

cases, there is a strong coupling between the ionization states of

the residues and the predominant conformation of a protein. To

address this issue, a methodology has been implemented that

combines the calculation of pKa with the generalized Born meth-

ods described earlier and MD. This approach, called pH-

MD,127,129 provides a means of coupling changes in protein and

peptide conformations with changes in the proton occupancy of ti-

tratable residues. The methodology utilizes an extended Lagran-

gian to dynamically propagate the proton occupancy variables,

which evolve in the electrostatic field of the protein/solvent envi-

ronment through the GBMV216 or GBSW134 models. The pH-MD

method, which has been successfully applied to a number of pro-

tein systems,127–129 extends the range of techniques that are avail-

able for accurately representing electrostatic interactions in sol-

vated biological systems.

III.E. Quantum Mechanical/Molecular Mechanical Methods

Because the QM treatment of an entire biological macromole-

cule requires very large amounts of computer time, combined

QM/MM potentials are commonly used to study chemical and

biological processes involving bond cleavage and formation,

such as enzymatic reactions. In this approach, a small region

(the QM region) of the system, whose electronic structural

changes are of interest, is treated quantum mechanically and the

remainder of the system (the MM region) is represented by a

classical MM force field. Typically, the former is a solute or the

active site of an enzyme, while the latter includes the parts of

the protein and the solvent environment that are not involved in

the reaction. QM/MM methods were first used for studying poly-

Table 1. Approximate Relative Computational Costs of MD Calculations Using Various Solvation Models

in CHARMM (Version c34b1) for Proteins in the Approximate Range of 50 to 500 Residues in Size

(750 to 7500 Atoms in the All-H Representation).

Atomic

representation

Outer NB

cutoff (Å)

Cost relative to:

Vacuum w/ the solvation

model-specific cutoff and

atomic representation

(‘‘intrinsic cost’’)

Vacuum w/ an 8 Å cutoff

and a polar H atomic

representation (‘‘actual cost’’)

1) SASA polar H 8 1.5–1.9 1.5–1.9

2) EEF1 polar H 10 1.6–1.7 2–3

3) SCPISM all H 14 1.7 10–16

4) ACE all H 20 3.5–4.5 60–80

5) GBSW all H 20 4.5–6 70–100

6) GBMV all H 20 6–10 100–175

7) TIP3P all H (solute) 16 20–60 200–5001

8) TIP3P polar H (solute) 16 50–200 200–5001

The ‘‘atomic representation’’ column indicates whether the solvation model is based on a polar hydrogen

(PARAM19) or an all-hydrogen (PARAM22) atomic model. (In the TIP3P calculations, this applies only to the pro-

tein, since the water model is unchanged). The ‘‘outer NB cutoff’’ column gives the outer cutoff distance for non-

bonded interactions recommended for the model. The relative costs, or speeds, of the various solvent models show a

much greater variability when they are all compared to a single vacuum calculation on a given system (last column,

‘‘actual cost’’) than they do when each model is compared to a vacuum calculation that uses the same atomic repre-

sentation and cutoff distance (fourth column, ‘‘intrinsic cost’’). See text. The TIP3P results (7,8) are for calculations

using 30–60 times as many explicit water molecules as protein residues. The TIP3P calculations have a higher com-

putational cost relative to vacuum when the simpler and faster polar H model is used for the protein. All benchmark-

ing was performed on an Intel Pentium 4 3.20 GHz CPU with an ifort (9.0) CHARMM compilation and repeated on

a 1.6 GHz AMD Opteron CPU with a gnu (gcc-4.2) compilation, using a non-bonded list update frequency of 10

steps/update.
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ene electronic excitations in 1972244 and carbonium ion stabili-

zation in the active site of lysozyme in 1976.245 Energy calcula-

tions based on the QM/MM methodology were carried out for

reactions in solution and in enzymes several years later.246

In the QM/MM approach, electrostatic effects as well as

steric contributions from the environment are incorporated

directly into the electronic structure calculations of the reactive

region, affecting its charge polarization and chemical reactiv-

ity.247 A QM/MM potential employing semiempirical QM mod-

els (QUANTUM module) was first implemented in CHARMM

in 1987,248,249 through the incorporation of parts of the MOPAC

program.250 It was used for the first MD free energy simulation

of an SN2 reaction in aqueous solution248; numerous applications

to enzymatic reactions have since been published (see, for exam-

ple Refs. 251–256). Because of its ability to treat bond-forming

and bond-breaking processes, to describe both the electronic

ground state and excited states,257 and to reduce the required

computer time dramatically relative to full QM calculations, the

QM/MM approach has become the method of choice for study-

ing chemical reactions in condensed phases and in macromolec-

ular systems such as enzymes and ribozymes.258,259 In addition

to the MOPAC-based QUANTUM module and its derivative

SQUANTM, the semiempirical, self-consistent charge density

functional tight-binding (SCC-DFTB) methods have been imple-

mented directly in CHARMM.260 Also, a number of external

electronic structure programs have been interfaced with

CHARMM and its MM force fields for use in the QM part of

QM/MM calculations. In this subsection, the key features of the

QM/MM module in CHARMM are summarized. Details of the

theory and applications can be found in Refs. 247, 249, 256 and 261.

Treatment of Boundary Atoms

In a combined QM/MM method, the most difficult part of the sys-

tem to model is the covalent boundary between the QM and MM

regions249,262; this problem is avoided if the boundary is between

molecules (e.g., between a ‘‘QM’’ ligand and an ‘‘MM’’ solvated

protein). For the general case, there are three main criteria that the

boundary between the QM and MM regions should satisfy.263 First,

the charge polarization at the boundary should closely approximate

that obtained from QM calculations for the entire system. The effec-

tive electronegativity of a boundary atom in the MM region should

be the same as that of a real QM atom. Second, the geometry at the

boundary must be correct. Finally, the torsional potential energy sur-

face at the boundary should be consistent with the surfaces arising

from both QM and MM calculations.

Three approaches for treating the QM/MM boundary have

been implemented in CHARMM. They are:

� Hydrogen link atom.246,249,264 In this most commonly used

approach, the valency of the QM fragment is saturated by a

hydrogen atom that is introduced into the system along the

covalent bond between the QM and MM regions. Although

the link-atom approach has been used in numerous studies, it

introduces additional degrees of freedom into the system; in

addition, partial charges on the MM atoms that are closest to

the link-atom must be removed to avoid convergence difficul-

ties. The latter problem has been solved by the use of a dou-

ble link-atom method265 that incorporates a balanced bond sat-

uration of both the QM and MM fragments.

� Delocalized Gaussian MM (DGMM) charges.266 This method

incorporates the delocalized character of charge densities on

MM atoms using Gaussian functions, and it has been success-

fully combined with the double link atom approach. The

method greatly simplifies the rules governing QM/MM elec-

trostatic interactions.

� Generalized Hybrid Orbital (GHO) method.263 This method

partitions the system at an sp3 atom. The boundary atom is

included in both the QM calculation, with a fully optimized

hybrid orbital and three auxiliary orbitals, and also the MM

force field, through the retention of the classical partial

charge. The method is an extension of the frozen, localized

orbital approach,267 and it neither introduces nor eliminates

degrees of freedom. The GHO method has been implemented

in CHARMM for semiempirical,263 SCC-DFTB,268 ab initio
Hartree-Fock,269 and DFT270 quantum chemical models, the

latter two through the GAMESS-US interface.

QM/MM Interactions

The interactions between the QM and MM regions are separated

into an electrostatic term, arising from the electric field of the

MM atoms, and a van der Waals component, accounting for dis-

persion interactions and Pauli repulsions. Although the electro-

static interaction Hamiltonian employs standard partial atomic

charges of the force field, the van der Waals term includes em-

pirical parameters for the QM atoms. Thus, like DFT itself, the

QM/MM methods yield semiempirical potentials, which can be

optimized by comparing interaction energies obtained from QM/

MM calculations to those from fully quantum-mechanical opti-

mizations for a database of biomolecular complexes.249,271–276

The QM van der Waals parameters depend on the QM model

and the basis set; they have been the subject of extensive valida-

tion studies.249,271–276

The use of combined QM/MM potentials also provides the

opportunity to examine the contribution from specific energy

components, including electrostatic and polarization energies. A

detailed analysis of the polarization energies can be useful for

developing empirical polarizable force fields,271,277 as well as

for studying the polarization energy contributions to ligand-pro-

tein binding interactions.278 The energy decomposition method

implemented in CHARMM has been used to study inhibitor-pro-

tein complexes278 and the differential polarization energy contri-

bution to the reactant and transition state in enzyme reactions.279

Because the adequate treatment of long-range electrostatic

effects has a large influence on the accuracy of combined QM/

MM energies, an efficient linear-scaling Ewald method has been

implemented in QM/MM methods.280 In addition, an approach

using the generalized SBP method29 (GSBP; see Section IV.B.)

for the treatment of electrostatics in QM/MM calculations is

also available in CHARMM.281

Program Source for QM/MM Implementations

As mentioned, for the self-consistent-charge DFTB Hamiltonian

(SCC-DFTB) methods,282,283 and the MOPAC-derived semiem-
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pirical methods (QUANTUM249 and SQUANTM) (Nam, K.,

Walker, R. C., Crowley, M., York, D. M., Case, D. A., Brooks,

C. L., III, Gao, J., in preparation.), the QM/MM potentials are

distributed as part of the CHARMM program. In 2005, an

updated version of the QUANTUM module, called SQUANTM,

was developed. It features a more efficient (i.e., faster) imple-

mentation of the QM/MM potential284 and is now the preferred

module for MOPAC-type QM/MM calculations in CHARMM.

In addition, there is a CHARMM interface to the MNDO97

program206; see also Section III.D. Interface routines have also

been created for ab initio molecular orbital and DFT packages,

including GAMESS-UK,266,285 GAMESS-US,286,287 CAD-

PAC,288 and Q-Chem.289 Interfaces to NWChem (5.0),290,291

Gaussian (03),292 and MOLPRO (2006.1)293 programs have

been implemented through the recently developed MSCALE

functionality in CHARMM, which is a general facility for

combining potential energy functions and models. The external

QM programs to which CHARMM has been interfaced have

to be obtained from their authors. With the exception of

Q-Chem, all of the CHARMM/QM interfaces (either internal

or external) are modular in form and can be linked together

with other functionalities in the CHARMM executable to carry

out energy minimization and MD simulations. By contrast,

Q-Chem294,295 is interfaced to CHARMM through the

exchange of external files, so that CHARMM and Q-Chem are

separate executables; this facilitates the initial setup but slows

down execution. Analytical first derivatives have been imple-

mented for all of the quantum chemical models. In addition,

numerical second derivatives can be calculated with the

VIBRan subcommand DIAGonalize FINIte. Furthermore,

numerical second derivatives for any of the CHARMM

QM/MM potentials can also be computed through the

POLYRATE interface (see Section VII.F.).

In all QM/MM calculations in CHARMM, each time an

energy or force evaluation is required, an SCF calculation is per-

formed. The electrostatic energy, which includes both QM and

QM/MM contributions, is added to the MM energy to yield the

total energy for the system. During an MD simulation or energy

minimization, the density matrix from the previous step is used

as the initial guess for the next SCF calculation. In evaluating

QM/MM interactions, the ab initio molecular orbital and DFT

methods include the contribution from all MM partial charges of

the system, i.e., without cutoff, whereas the semiempirical mod-

ules have the option of using a cutoff list as well as the particle

mesh Ewald method for periodic systems.

III.F. Restraining Potential Functions

In addition to the ‘‘physical’’ terms in the potential energy func-

tion, a number of different restraint terms can be applied to the

system with CHARMM. These restraints are useful for the study

of many problems; they can be used to restrain the system to a

given conformation during various stages of a computation (e.g.,

energy minimization, equilibration), to introduce a biasing

potential for the performance of umbrella sampling in PMF cal-

culations (see later),296 or, more generally, to drive the system

toward a known end state in any kind of sampling procedure.

The simplest type of restraint is the spatial harmonic positional

restraint, in which a selected set of atoms is subjected to a

quadratic potential relative to a given reference position in Car-

tesian space. A harmonic restraint that is a function of the

‘‘best-fit’’ root-mean-square deviation (RMSBFD) relative to a

reference structure can also be applied to selected atoms with ar-

bitrary weights. This restraint transiently reorients the structure

relative to a reference structure with a rigid best-fit coordinate

transformation, based on the selected atoms and weights, prior

to the application of the distance restraints. It is analytically dif-

ferentiable.297 Internal coordinate and dihedral angle restraints

can also be applied. The Miscellaneous Mean Field Potential

(MMFP) module is a general facility that is used to apply spher-

ical, cylindrical, and planar restraining potentials to a selected

group of atoms or their center of mass. The module can also be

used to impose a distance restraint (on two sets of atoms), a

pseudo-angle restraint (three sets) or a dihedral angle restraint

(four sets). Additionally, restraints on the radius of gyration as

well as on contact maps can be imposed in CHARMM.298–300

Restraints can be applied that correspond to user-specified mo-

lecular shapes (SHAPe) or combinations of distances (CON-
Strain DISTance). For NMR-based structural determina-

tion90,301,302 special-case distance restraints corresponding to the

Nuclear Overhauser Effect (NOE) can be imposed, as well as

flat-bottomed dihedral restraints based on dihedral angle data

from scalar coupling constant measurements.303 The NOE facil-

ity also supports time-averaged distance restraints,304 which only

require restraints to be satisfied on average. The analytical forces

introduced by all restraints in CHARMM are consistent with the

first derivative of the energy, which is particularly important for

the RMSBFD restraint.297

IV. Nonbonded Interactions and Boundary Methods

To complete the description of the Hamiltonian for the system,

the CHARMM user needs to specify the option with which the

nonbonded energy terms will be computed. In molecular

mechanics calculations all atoms, in principle, can interact via

the LJ and electrostatic interaction terms with all other

atoms. However, the computational time for all-pair calculations

scales as N2, where N is the number of atoms; this scaling

behavior leads to an excessive computational cost for large sys-

tems. For all but the smallest systems, to save time, explicit cal-

culation of the nonbonded pairwise interaction terms is usually

limited to atom pairs whose interparticle separation is less than

a user-specified cutoff distance; these pairs are stored in a list,

which in many applications (such as MD simulations) is not

recalculated at every step. In CHARMM, this ‘‘nonbonded pair

list’’ or ‘‘nonbonded list’’ may be atom- or group-based and is

typically used in conjunction with various methods to treat the

long-range interactions, such as extended electrostatics and long-

range LJ corrections, in addition to various truncation schemes.

The nonbonded lists in CHARMM can be constructed using sev-

eral types of algorithms based on spatial grids or clustering

methods that speed up neighbor identification significantly for

large systems.

The treatment of nonbonded interactions at and beyond the

boundary of the model system is also important in biomolecular
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calculations, because the part of the system that is being mod-

eled explicitly is often much smaller than the real system. In a

typical example, a single protein molecule surrounded by several

thousand water molecules in a 1000 nm3 volume is used to rep-

resent about 1012 protein molecules and 1019 water molecules in

a 1 ll volume of a 1 lM protein solution. Early MD simulations

(e.g., the classic study of argon2) showed that a very small sys-

tem (e.g., 256 Argon atoms) possessed many of the properties of

the macroscopic liquid. Nevertheless, the limited size of the

simulated system can introduce artifacts into the results. This

can be due to the relatively small number of particles that inter-

act; i.e., the protein feels the influence of far fewer water mole-

cules in the model than it does in the real system. There are also

possible surface effects, since the small simulated system has a

much larger surface area/volume ratio than the real system; in

the earlier example, this ratio is 10,000 times larger in the model

system. The magnitude of such size-related effects can be

reduced by adding an energy term that mimics the properties of

the neglected surroundings, such as an SBP, or by imposing per-

iodic boundary conditions (PBC) on the system. In PBC, all of

the molecules in the central cell are surrounded by other mole-

cules, as if there were no explicit boundaries. (Nonetheless,

there can still be finite-size effects if the size of the central cell

is chosen to be smaller than some intrinsic correlation length of

the molecular system).305 Also, some studies have indicated that

spherical cutoff methods may introduce some artificial long-

range ordering of water at water/vapor and water/lipid interfaces,

an effect that is typically absent when lattice sum methods,

which require PBC, are used for the calculation of electrostatic

interactions306 (see Section IV.B).

The various methods in CHARMM for the treatment of

boundaries and nonbonded interactions are briefly described in

this section. The reader is referred to the CHARMM documenta-

tion for further details. The optimal methods to use in a given

problem are, as is often the case, a compromise between effi-

ciency and accuracy. The user may have to test the system using

two or more of the available methods for accuracy, via appropri-

ate comparisons to experiment, and computational efficiency.

Currently, for MD simulations with the fixed-point-charge force

fields, the best (most accurate) approach is considered to be use

of PBC systems with a nonbonded cutoff of at least 12–14 Å,

the force-shifting or force-switching nonbonded options, the par-

ticle mesh Ewald treatment for long-range electrostatics, and LJ

corrections for long-range van der Waals interactions. However,

if the system of interest is very large, or if extended simulation

times or many simulations are required, a less time-consuming

SBP method may need to be employed. With the SBP methods,

it is desirable to include all nonbonded interactions, possibly via

extended electrostatics, or to perform electrostatic scaling,307 in

addition to applying the appropriate reaction field method for

contributions beyond the boundary.

IV.A. Nonbonded Interactions

Spherical Cut-Off Methods

Calculation of the nonbonded pairwise atomic interactions, i.e.,

interactions between atoms not directly bonded to one another,

is typically the most computationally demanding aspect of

energy and energy-derivative calculations. As the number of

possible pairwise interactions in a system of N atoms grows as

N2, the explicit calculation of all Coulombic and LJ terms is

usually impractical for large systems. It is, therefore, necessary

in systems of greater than a few thousand atoms to truncate the

nonbonded interactions at a user-specified cutoff distance. The

use of this approximation, which is referred to as a spherical

cutoff approach, means that only atom pairs within the cutoff

distance need to be included, greatly speeding up the calcula-

tion. However, it may introduce artifacts. Most notably, a simple

truncation of the potential energy creates artificial forces at the

cutoff distance (because of the discontinuity in the energy),

which can give rise to artifacts in dynamics or structure.308 Such

artificial forces have been shown, for example, to significantly

inhibit protein motion.309 For this reason, proper truncation

schemes for nonbonded interactions are an essential part of the

spherical cutoff approach; this is especially true for the electro-

static interactions, which have a longer range than the van der

Waals interactions. The simplest treatments consist of truncating

the Coulomb interaction at the cutoff distance, while using a nu-

merical procedure to decrease the unwanted influence of the

truncation.308 CHARMM provides a variety of truncation meth-

ods that act to smooth the transition in the energy and force at

the cutoff distance, thereby reducing the errors in that region.

These methods, which can be applied to both the electrostatic

(Coulombic) and LJ interactions, include energy shifting

and switching,22 as well as force shifting and switching

approaches.308,310 The force shift/switch methods insure that, as

the interatomic separation approaches the truncation distance,

the forces go to zero in a smooth, continuous manner. These

methods are, thus, particularly useful in MD simulations, where

the forces determine the trajectories of the atoms, and they are

the currently recommended approaches for most cases when a

spherical cutoff is used. MD trajectories of even highly charged

biomolecules like DNA have been shown to be stable if the

appropriate smoothing functions and cutoff distances (usually at

least 12 Å) are used (see later).40,311

Generating the Nonbonded Pair List

As stated earlier, the purpose of using finite cutoffs in energy

calculations is to reduce the number of nonbonded interaction

terms. However, the calculation to determine which atom pairs

fall within the cutoff distance can, itself, be time-consuming.

Verlet first introduced the idea of reducing the required fre-

quency of this calculation by extending the spherical cutoff

region about each atom with an additional volume shell,312

which is referred to as a buffer region. In this technique, all of

the atom pairs that are within the outer cutoff distance are deter-

mined and stored in the nonbonded list, while only the pairs that

are within the inner cutoff are used in the energy (and force)

calculation. This approach reduces the computer time in two

ways: (1) for a fixed cutoff distance, the time for calculating

energies, and forces from a nonbonded list grows linearly (rather

than quadratically) with the system size; and (2) in many calcu-

lations, the list does not have to be recalculated at every step. In

MD or energy minimizations, the atomic positions generally do

not vary greatly from one step to the next, so that the non-
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bonded list compiled with the buffer shell contains all the atom

pairs that will be required in the energy calculations for the next

several steps. The same list can, in principle, be used until a

pair of atoms in the system moves from beyond the outer cutoff

to within the inner cutoff; at the very least, one interparticle dis-

tance in the system must have decreased by the width of the

buffer shell before the list needs to be recalculated. Accordingly,

the ‘‘heuristic’’ nonbonded option in CHARMM allows the list

to be automatically updated (recalculated) whenever one or

more atoms have moved a distance greater than half the width

of the buffer shell. The user can alternatively specify a fixed

update frequency, typically from 10 to 50 steps/update; for cases

in which the system configuration is changing rapidly (e.g., pro-

tein folding simulations), more frequent updates may be

required. The larger the buffer shell, the less frequently the non-

bonded list needs to be recalculated (but the longer it takes to

calculate the list, itself). A typical buffer width used in MD sim-

ulations is 1–2 Å, although for large systems and the slow list-

builder option (see below), it is often advantageous to use a

buffer width of 4 Å or more.

The use of a list and a buffer region does substantially

reduce the overall CPU time for many calculations, relative to

the corresponding non-list-based calculations. However for large

systems, the fraction of time that is spent compiling the non-

bonded list can still be significant. This is especially true if the

list is calculated in a brute-force way, by distance-testing all the

N(N 2 1)/2 atom pairs. The BYGROUPS algorithm in

CHARMM speeds up list generation by using standard

CHARMM atomic groupings and compiling a group–group pair

list (which is much faster than compiling the atom–atom list),

and then calculating the atom–atom list from this shorter list. It

is currently the default listbuilder in CHARMM and supports

nearly all the features and options in the program (e.g., periodic

boundary conditions and all free energy methods). However,

since the algorithm tests all possible group–group pairs, it has

O(N2) time complexity and is slow for large systems. Yip and

Elber313 developed a listbuilder algorithm that partitions the sys-

tem into cubical spatial regions whose side length is equal to the

outer nonbonded cutoff distance (which includes the buffer

thickness) and then performs distance testing only between

atoms in the same or directly adjacent cubes. This method,

which was implemented in CHARMM as the BYCUBES

method by Tom Ngo, has O(N) (linear) time complexity and is

faster than BYGROUPS for large systems. The ‘‘By-Cluster-In-

Cubes’’ or BYCC algorithm314 uses both the grouping and spa-

tial partitioning techniques and, therefore, it has O(N) time com-

plexity and is faster than the other two algorithms. BYCC is

approximately 2.2–2.8 times faster than BYCUBES across all

system sizes and cutoff distances, and across a variety of plat-

forms. The speed advantage of BYCC relative to BYGROUPS

increases with system size and decreases with cutoff distance;

for protein/water systems and a 12 Å cutoff distance, the relative

speed advantage across various platforms is approximately 1 1

2 3 1024N (where N is the number of atoms in the system).

Hence for a 1000-atom system, the relative speed advantage is

�1.2, but for a 100,000-atom system it is �20. For the latter

system, MD simulations can be significantly faster using any of

the cubical listbuilder algorithms (BYCC, BYCUBES, or

BYCBIM), particularly for calculations using a thin buffer shell

and high update frequencies. The memory requirements of

BYCC are marginally higher than those of BYGROUPS and

substantially lower than those of the other algorithms. In con-

junction with the NBACtive command, BYCC can also calculate

the list for user-specified ‘‘active’’ parts of the system without

the need for modifying the PSF. This partial-system list feature

is fundamental to a general conformational search and structure

prediction module that is currently being developed in

CHARMM (the Z Module, ZEROM keyword). In addition,

BYCC is the basis of the domain decomposition parallel scheme

being implemented in CHARMM (see Section X.B.). For a

given set of atomic coordinates and cut-off distances, all three

algorithms (BYCUBES, BYGROUPS, and BYCC) generate the

same nonbonded list. All are also capable of generating a

group–group pair list (as opposed to an atom–atom pair list),

which is required by some CHARMM models (e.g., EEF1). In

the group-based lists, a pair of groups are included if the separa-

tion between group centers is less than the cutoff distance. Such

lists are sometimes used because they prevent the splitting of

neutral groups into partially charged subgroups in the regions

around the cutoff distance, which may lead to small errors in the

electrostatic term. However, the use of a group list means that

some atom pairs included in the energy calculations have inter-

particle separations greater than the cutoff distance. The

BYCBIM algorithm extends the BYCUBES method to systems

with images or periodic boundaries, and it (like BYGROUPS

and BYCC) works for parallel simulations. It is currently the

most efficient listbuilder in CHARMM for calculations involving

image atoms.

Extended Electrostatics

The Extended Electrostatics model approximates the full electro-

static interactions of a finite set of particles by partitioning the

electric potential and the resulting forces acting on a particle i
located at ri into a ‘‘near’’ and an ‘‘extended’’ contribution.315

The near contribution arises from the charged particles which

are spatially close to ri (within a cutoff distance), while the

extended contribution arises from the particles which are spa-

tially distant from ri. The total electrostatic potential can be

written as a sum of the two. Interactions between particles

within the cutoff distance are calculated by a conventional pair-

wise additive scheme, whereas interactions between particles

separated by a distance greater than the cutoff are evaluated

using a time-saving multipole (dipole and quadrupole) approxi-

mation. The energy and forces are calculated by explicitly evalu-

ating pairs in the near-neighbor list and using the stored poten-

tials, fields, and gradients to approximate the distant pairs. The

electric potential and its first and second derivatives are calcu-

lated only when the nonbonded list is updated and stored. This

simple approximation is based on the assumption that for distant

pairs the atomic displacements are sufficiently small between

updates and that the changes in their electrostatic interactions

can be accurately calculated using local expansions. The

approach is particularly useful for efficiently including electro-

static interactions at all distances in the treatment of a finite sys-

tem, which is simulated using SBPs such as stochastic boundary
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potential (SBOU),27 spherical SBP (SSBP),28 and GSBP29 (see

Section IV.B.). Examples are given in free energy difference

calculations.316 The method has been extended to include higher

order multipoles in a CHARMM implementation of the fast

multipole method317 (FMA module). An alternative method for

the rapid calculation of the long-range electrostatic energies and

forces in a system is Linear Time Complexity Reduction (LTCR).

In this method, the 1/rij dependence of the electrostatic term is

approximated as a polynomial in the squared distance, so that the

double sum over pairwise electrostatic interactions can be rewritten

as a functional of single sums over single-particle terms.318

Long-Range LJ Corrections

Correction schemes for the LJ energy and virial beyond the

atom truncation distance have been implemented in CHARMM.

One method (invoked with the LRC option of the NBONd com-

mand) determines the number density of each atom type in the

system, and applies an isotropic correction to the LJ energy and

virial acting on each atom in the system.8 A second method is

script-based, makes no isotropic assumptions, and calculates the

correction to the virial explicitly, resulting in a more accurate

pressure and surface tension. The latter method does not correct

for the energy changes associated with truncation319 and it is

significantly more costly than an LRC calculation; however,

because the virial correction does not need to be updated at ev-

ery step in MD simulations (instead, e.g., every 100 or 1000

steps), the overall cost of the anisotropic correction can be

reduced. Lastly, the long-range LJ interactions can be calculated

using the Isotropic Periodic Sum (IPS) method described later.

The IPS method calculates long-range interactions using the so-

called isotropic and periodic images of a local region around

each particle. It corrects not only energies, but also the forces

and the virial. Because IPS assumes that the distant environment

around an atom is similar to (and as heterogeneous as) the local

environment, it preserves the density of the system, and the

incorporation of contributions from the long-range interactions

into the short-range potential gives more accurate results than

those obtained with an isotropic long-range correction.

IV.B. Boundary Conditions

Solvent Boundary Potentials

One approach for simulating a small part of a large system (e.g.,

the enzyme active site region of a large protein) uses an SBP. In

SBP simulations, the macromolecular system is separated into

an inner and an outer region. In the outer region, part of the

macromolecule may be included explicitly in a fixed configura-

tion, while the solvent is represented implicitly as a continuous

medium. In the inner region, the solvent molecules and all or

part of the macromolecule are included explicitly and are

allowed to move using molecular or stochastic dynamics. The

SBP aims to ‘‘mimic’’ the average influence of the surroundings,

which are not included explicitly in the simulation.27,28 There

are several implementations of the SBP method in CHARMM.

The earliest implementation, called the SBOU, uses a soft non-

polar restraining potential to help maintain a constant solvent

density in the inner or ‘‘simulation’’ region while the molecules

in a shell or buffer region are propagated using Langevin dy-

namics.27 By virtue of its simplicity, this treatment remains

attractive and it is sufficient for many applications.320,321 To

improve the treatment of systems with irregular boundaries in

which part of the protein is in the outer region, a refinement of

the method has been developed that first scales the exposed

charges to account for solvent shielding and then corrects for

the scaling by postprocessing.307

The SSBP, which is part of the MMFP module (see Section

III.F.), is designed to simulate a molecular solute completely

surrounded by an isotropic bulk aqueous phase with a spherical

boundary.28 In SSBP, the radius of the spherical region is

allowed to fluctuate dynamically and the influence of long-range

electrostatic interactions is incorporated by including the dielec-

tric reaction field response of the solvent.28,29 This approach has

been used to study several systems.322–325 Because SSBP incor-

porates the long-range electrostatic reaction field contribution,

the method is particularly useful in free energy calculations that

involve introducing charges.322–325

Like the SBOU charge-scaling method,307 the GSBP is

designed for irregular boundaries when part of the protein is out-

side the simulation region.29 However, unlike SBOU, GSBP

includes long-range electrostatic effects and reaction fields. In

the GSBP approach, the influence of the outer region is repre-

sented in terms of a solvent-shielded static field and a reaction

field expressed in terms of a basis set expansion of the charge

density in the inner region, with the basis set coefficients corre-

sponding to generalized electrostatic multipoles.29,326 The sol-

vent-shielded static field from the outer macromolecular atoms

and the reaction field matrix representing the coupling between

the generalized multipoles are both invariant with respect to the

configuration of the explicit atoms in the inner region. They are

calculated only once (with the assumption that the size and

shape of inner region does not change during the simulation)

using the finite-difference PB equation of the PBEQ module.

This formulation is an accurate and computationally efficient

hybrid MD/continuum method for simulating a small region of a

large macromolecular system,326 and is also used in QM/MM

approaches.281,327

Periodic Boundary Conditions and Lattice Sum Methods

CHARMM has a general image support facility that allows the

simulation of symmetric or periodic boundary systems. All crys-

tal forms are supported, as well as planar, linear, and finite point

groups (such as dimers, tetramers, etc.). Figure 6 depicts the

simulation of a virus capsid where icosahedral symmetry has

been imposed so that it is necessary to represent explicitly only

1/60th of the entire capsid.328 It is also possible to build a unit

cell related to its neighbors with any space group symmetry, to

optimize its lattice parameters and molecular coordinates, and to

carry out a vibrational phonon analysis using the crystal module

(CRYSTAL),329 which is an extension of the original image fa-

cility.22,330 Simulations allowing lipids in opposing membrane

leaflets to exchange can be carried out using P21 boundary con-

ditions.330 The image facility achieves its generality by treating

image atoms (coordinates and forces) explicitly, thus avoiding

the size and transformation limitations inherent in the more
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commonly used minimum-image convention. This also allows

the virial to be computed with a single-sum method for a rapid

evaluation of the pressure.8 Bond linkages (with additional

energy terms including bond angle, dihedral angle, and improper

dihedral angle terms) can be introduced between the primary

atoms and image atoms to allow the simulation of ‘‘infinite’’

polymers, such as DNA, without end effects. For infinite sys-

tems, the simulation can be restricted to the asymmetric unit

because arbitrary rotations, translations, and reflections can be

applied to generate the coordinates for larger versions of the sys-

tem (see also Fig. 6). To ensure better numerical stability in the

volume and shape fluctuations of the unit cell during constant-

pressure Nosé–Hoover–Andersen–Klein331 dynamics, the sym-

metry operations on the central cell are handled internally by

keeping the atomic coordinates in a symmetric projection of the

unit cell vectors. The latter condition is imposed to prevent

unwanted torque on the system due to box shape changes (e.g.,

in the triclinic case).

If periodic boundary conditions are imposed on the system,

the electrostatic energy can be expressed as a lattice sum over

all pair interactions and over all lattice vectors. Namely,

Uð~r NÞ ¼ 1

2

XN

i¼1

XN

j¼1

X
~m

0 qiqj

4pe0 ~rj �~ri þ m!
�� ��; (7)

where ri is the position vector and qi is the charge of particle i,
N is the number of atoms in the unit cell, ~m is the lattice vector

of the (real space) periodic array of unit cells, and the prime on

the sum indicates that j = i when ~m 5 0. This sum converges

conditionally—i.e., it depends on the order of the summation

over unit cells—and slowly.

The method developed by Ewald332 transforms the summa-

tion to two more complicated but absolutely and rapidly conver-

gent sums, plus a ‘‘self-energy’’ term and a ‘‘dipole’’ term. The

dipole term, which captures the conditional convergence of the

original sum and includes the external reaction field conditions,

can be made to vanish (see below). The total electrostatic

energy, Uð~r NÞ, then equals
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where erfc is the complementary error function, j is a constant,

k is the reciprocal space lattice vector, V is the volume of the

unit cell, and I is the imaginary unit. The first term is a recipro-

cal space sum over all pairwise interactions (both short- and

long-range) in the infinite lattice, in which the charge distribu-

tions about each particle are spherical Gaussians. The second

term is a direct sum over all short-range pairs and consists of

two components: A) the point-charge interactions between the

short-range pairs and B) a term that cancels the contributions of

these pairs in the first term (reciprocal space sum); i.e., the latter

component subtracts the interactions between the Gaussian

charge distributions for all short-range pairs. The third term,

which is the self-energy term, provides the same type of cancel-

lation for each Gaussian charge distribution in the unit cell inter-

acting with itself. The parameter j does not affect the total

energy and forces, but rather adjusts the relative rates of conver-

gence of the real and reciprocal space sums; it is usually chosen

so as to optimize the balance of accuracy and efficiency of the

calculations. If j is chosen to be large enough, only the ~m ¼ 0

elements contribute to the second (short-range) term, and it

Figure 6. The protomeric unit of HRV14 (ribbon) capsid compris-

ing VP1 (blue), VP2 (green), VP3 (red), and VP4 (yellow) peptide

chains and two calcium ions (purple spheres). The protomer is sol-

vated on the inside and outside with water molecules shown as

small cyan spheres (which fill the interior of the capsid space). The

primary unit has 12,432 protein atoms and 19,953 water atoms.

Symmetry conditions, imposed through the use of the general image

facility in CHARMM, model the entire virus capsid of ~750,000
atoms.328 This illustrates the use of molecular symmetry in the

CHARMM program to reduce the size of a calculation in large sys-

tems.
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reduces to the minimum-image convention sum. The triple sum

of the first term can be rewritten as a double sum over ~k and i.
The dipole term333,334 can be added to account for the effects of

the total dipole moment of the unit cell, the shape of the macro-

scopic lattice, and the dielectric constant of the surrounding

medium. However, this term vanishes in the limit that the net

dipole moment of the unit cell, which is origin-dependent and

affected discontinuously by image wrapping, vanishes, or the

external dielectric constant goes to infinity (so-called ‘‘tin foil’’

boundary conditions). In CHARMM, because interactions

between 1,2 and 1,3 bonded atom pairs are excluded from the

point-charge part of the direct sum and, hence, do not appear in

the second term of eq. (8), their contributions to the reciprocal

sum are corrected for in a separate calculation (EWEX term).

Recent variants of the Ewald method, which employ pairwise

cutoff lists for the direct sum, charges on grids, and fast Fourier

transforms, greatly enhance computational performance. One of

these, the particle mesh Ewald (PME) method,335,336 has been

incorporated into CHARMM. Although convergence of the

Ewald summation requires neutrality of the unit cell, the Ewald

and PME methods can be used for a system carrying a net

charge by the effective superposition of a structureless neutraliz-

ing background onto the unit cell. CHARMM optionally com-

putes both the energy and the virial correction terms for the net

charge case,337 which may be included with a user-specified

scale factor that is optimally determined by the dielectric.338,339

The treatment of the long-range electrostatics based on PME,

and the constant pressure and constant surface tension simulation

algorithms340 are implemented for the crystal symmetries as

defined in the CRYSTAL facility. Consequently, the CRYSTAL

facility must be used for such calculations in CHARMM.

Although the Ewald and PME methods are formally applica-

ble to periodic systems, it is also possible to use them to calcu-

late the electrostatic energy and forces within a finite isolated

cluster without cutoff effects. The method relies on truncation of

the 1/r Coulomb potential at a finite range R. To remove all

interactions between charges belonging to neighboring unit cells

while keeping those within a finite cluster of diameter s, it is

sufficient to sum over all lattice vectors using a filter function-

modified Coulomb potential341 with finite range R, such that s \
R \ L 2 s, where L is the center-to-center distance between

neighboring cells. With this modification, the PME methods can

be used to rapidly compute energies and forces with no interfer-

ence from periodicity and with nearly linear scaling.342

PBC with the minimum-image convention can also be used

in CHARMM through the PBOUND module, but the facility

does not currently support constant-pressure MD and an Ewald

description of the electrostatics.

IPS for Long-Range Interactions

The IPS method343 is a general method for calculating long-

range interactions, that, unlike Ewald-based methods, does not

sum contributions over lattice images. Instead, so-called ‘‘iso-

tropic’’ periodic images are assumed to represent remote

structures. The isotropic and periodic character of the images

simplifies the summation of long-range interactions relative to a

summation over lattice images. The IPS method reduces the cal-

culation of particle interactions to the calculation of short-range

interactions within a defined region (a cutoff distance) plus

long-range interactions given by IPSs. Because of the periodicity

of the image regions, the total forces acting on one atom from a

second atom and all of its images goes smoothly to zero at the

boundary of the local region about the first atom, so that no

truncation is needed. Simulation results have shown that for a

LJ fluid, the energy, density, and transport coefficients are nearly

independent of the cutoff distance for all but the shortest cutoff

distances (less than �8 Å).343,344

Analytic solutions of IPS have been derived for electrostatic

and LJ potentials, but it can be applied to potentials of any func-

tional form, and to fully and partially homogeneous systems, as

well as to nonperiodic systems. Customized formulations of the

method have been developed for use in systems with 1- or 2-

dimensional homogeneity (1D or 2D IPS); for example, 2D IPS

can be used for membrane systems. For liquid/vapor interfaces,

2D IPS is exact when the interface is homogeneous in the inter-

facial plane. Because 2D IPS assumes a finite thickness of an

interfacial system, it is not suitable for liquid-liquid interfacial

systems where the thickness is infinite. For liquid/liquid interfa-

ces, such as lipid bilayers in water, PME/IPS (PME for electro-

statics and three-dimensional [3D] IPS for van der Waals inter-

actions) appears to provide the most realistic conditions. The

PME/IPS method is in excellent agreement with large cutoffs

for interfacial densities and dipole potentials and only slightly

underpredicts the surface tensions,345 though the method is not

exact for the long-range interactions in these inhomogeneous

systems. For true lattice systems where long-range structure can

be accurately described by periodic boundary conditions, IPS is

less accurate than lattice sum-based methods like PME. Recent

advances in the IPS method to include a second longer cutoff

(Wu, X. and Brooks, B.R., submitted for publication) have elim-

inated many of the aforementioned problems.

The IPS method is computationally efficient and is readily

parallelized, in part because, unlike PME, it does not require the

calculation of Fourier transforms. The communication scheme is

similar to that for other cutoff-based methods.

V. Minimization, Dynamics, Normal Modes, and

Monte Carlo Methods

An essential element of CHARMM functionality is the calcula-

tion of the energy and its derivatives, because this makes possi-

ble the study of many properties by energy minimization, Monte

Carlo sampling, normal mode analysis, and MD. CHARMM

provides a number of minimization methods and several

approaches to the propagation of trajectories that allow for the

sampling of a variety of ensembles.

V.A. Energy Minimization

CHARMM supports a number of minimization methods (MINI-
mize command) that rely on either the first derivatives or the

first and second derivatives of the energy function [eq. (1)].

Multiple methods are included in the program because each one
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has its advantages. They include the simplest method, Steepest

Descent (SD), and other first-derivative methods such as a vari-

ant of the Fletcher–Powell algorithm and a conjugate gradient

technique (CONJ). The latter two methods obtain better conver-

gence than SD by including information on the derivatives from

prior points of the minimization. The second-derivative methods

operate in either the full space of the Hessian (Newton–Raphson,

NRAP) or in a subspace of the full Hessian (Adopted-Basis set

Newton–Raphson, ABNR). The NRAP algorithm has additional

features that can force it off a saddle point; these are useful, for

example, when the initial structure has unwanted symmetry. A

minimization method that is intermediate between the first-deriv-

ative and full Hessian methods, the truncated-Newton (TN) min-

imizer (TNPACK), has also been implemented in CHARMM.346

This approach is comparable to ABNR with respect to computa-

tional efficiency, though its convergence is better, particularly

for systems with less than 400 atoms. In general, the first-deriva-

tive methods are more robust in the initial stages of energy min-

imization calculations, while the NRAP and ABNR or TNPACK

techniques provide better convergence to the local minimum

when there are no large gradient components. Typically, initial

minimizations are performed using the first derivative methods,

usually beginning with SD, especially in cases where there are

bad contacts causing a large initial gradient. This is followed by

the NRAP method for small systems (\300 atoms), or ABNR

or TNPACK when NRAP matrices become too large. Methods

such as SD and CONJ are also more robust than second deriva-

tive methods when faced with energy and force discontinuities

that occur with some energy terms and options (e.g., electro-

static truncation).

In addition to potential energy minimization, local saddle

points may be identified in CHARMM by minimizing the norm

of the potential energy gradient (GRAD option of MINImize
command). Depending on the initial conditions, the search will

either be terminated at a minimum or a saddle point on the

potential energy surface. This feature is primarily used for

determining first-order saddle points. As the second-derivative

matrix is employed to calculate first derivatives of the target

function in this method, it is much slower than ABNR and

NRAP and, therefore, is not recommended for more standard

energy minimizations. Alternatively, saddle points can be

located using the SADDle option associated with NRAP. This

option identifies the most negative eigenvalue(s) and maxi-

mizes along the corresponding eigenvector(s) while minimiz-

ing in all other directions. Another approach to finding accu-

rate saddle points is implemented as part of the TREK module

(Section VII.A.).

V.B. Molecular Dynamics

Classical MD simulations are used for evaluating the structural,

thermodynamic, and dynamic properties of biomolecular systems.4

Such simulations require integration of Newton’s equations of

motion, which determine the coordinates of the system as a func-

tion of time. The principal assumption in the use of MD is that

classical dynamics is adequate and that quantum corrections to the

atomic dynamics are negligible. This assumption is valid for most

problems of interest in macromolecular biological systems; i.e.,

above �50 K, for a given biomolecular potential energy surface,

the classical and QM descriptions of the dynamical properties of

interest effectively coincide.24,347,348 Notable exceptions arise in

chemical reactions (proton tunneling; see Section III.E.). Also, for

the estimation of the absolute entropy (and free energy), higher

temperatures are required to reach the classical limit; however,

for entropy and free energy difference calculations the classical

treatment often provides a good approximation even at room

temperature because the low-frequency modes make the dominant

contribution.349 This, of course, provides the theoretical basis

for the widely used classical free energy simulation methods

(Section VI.A.).

MD trajectories in CHARMM are controlled by the general

and multi-optioned DYNAmics command. A single call to DY-
NAmics can initiate, propagate, and terminate a trajectory, as

well as specify options for the dynamics integration scheme,

nonbonded interactions, the image atom list, thermostats, heating

schedules, initial assignment and rescaling of velocities, statisti-

cal ensembles, system recentering, the generation of binary tra-

jectory and velocity files, the output of formatted files containing

coordinates, forces, and velocities, the writing of energy statis-

tics to standard output, and the reading and writing of restart

files. The algorithms by which the atomic positions of the sys-

tem are propagated after the computation of the forces are called

dynamics integrators. There are currently five supported integra-

tors within CHARMM: ORIG, LEAP, VVER, VER4, and VV2.

Each integrator is unique and has its own strengths and limita-

tions. The standard integrator, LEAP, is based on the Verlet

leap-frog algorithm. It is the most general and most widely used

of CHARMM’s integrators and has the largest number of sup-

ported features. The leap-frog algorithm was selected to be the

standard because, in its simplest form, it is an efficient, high-pre-

cision integrator with the fewest numerical operations.8 The

newest integrator, VV2, which is based on a velocity Verlet

scheme with improved temperature and pressure control,350 has

been implemented to support polarizable models based on the

classical Drude oscillators.104 The oldest integrator, ORIG,22 is

based on the lower-precision Verlet three-step method. This is

the most limited of the CHARMM integrators, but it is retained

for historical reasons and testing of other integrators. The origi-

nal velocity Verlet integrator, VVER, is also a high-precision in-

tegrator that supports a multiple-time-step method (MTS),351 but

it is otherwise limited (e.g., no pressure calculation). The leap-

frog integrator has been extended to a theoretical 4th spatial

dimension in the development of the VER4 integrator352 for

the purpose of enhanced conformational sampling in 4-dimen-

sional MD (Section VI.E.); the integrator is usable only for this

function.

The standard Verlet MD integration scheme or one of its var-

iants is often used to perform simulations in the microcanonical

ensemble (NVE), in which the total energy and volume are con-

stant. The NVE, NVT (canonical), and NPT (isothermal-isobaric)

ensembles are the ‘‘workhorses’’ of contemporary MD simula-

tions. NPT is often useful during equilibration for achieving the

desired water density in a system with explicit solvent; once the

system is stable, a change to the NVE or NVT ensemble may be

appropriate. For testing and evaluating new simulation methods,

the NVE ensemble has the advantage that energy conservation
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can be used as a necessary (though not sufficient) diagnostic for

the validity of the calculations. The leap-frog integrator also cal-

culates a high-frequency corrected total energy353 which elimi-

nates the time-step dependence of the total energy. Since the

Verlet integration methods are symplectic, in the absence of

constraints like SHAKE,354 this corresponds to monitoring

energy drift with a shadow Hamiltonian.355 Moreover, con-

strained dynamics with Verlet and SHAKE is symplectic if the

constraints are introduced with sufficient accuracy.356

Using this approach, the fluctuation in the total energy has

been typically observed to decrease by one order of magnitude

or more. By eliminating high frequency noise, small changes in

the total energy become more readily observable. A similar

approach is also used for the piston degrees of freedom (see

later) to allow an accurate estimate of the transfer of heat into a

constant temperature and pressure system. Both velocity reas-

signment and velocity scaling can be performed with the Verlet-

type integrators to couple atoms in the simulation volume to a

heatbath; velocity scaling is often used to gradually heat or cool

a system targeting a desired temperature.

All the integrators are consistent with the use of SHAKE-

type methods354 for the imposition of holonomic constraints.

These constraints can be employed, for example, to fix the

length of covalent bonds involving hydrogen atoms when these

motions are not of specific interest, as is the case in most appli-

cations of MD simulations not involving vibrational spectrum

analysis or proton NMR. SHAKE-type constraints are used for

fixing the relative positions of charges that are not localized on

atoms, as in the early ST2 water model,73 the TIP4P model,50

and other more elaborate water models. Eight types of holo-

nomic constraints are available in CHARMM. When more than

one type of constraint is applied, an iterative, self-consistent

approach is used to satisfy all constraints. The supported con-

straints include: SHAKe (simple distance constraints), LONEpair

(general massless particle constraint facility; preprocessor

keyword LONEPAIR), CONStrain FIX (atomic positional

constraints), ST2 (required restraints for the ST2 water model

that are activated on PSF GENEration when ST2 is the residue

type), FIX (a TSM subcommand used for fixing internal coordi-

nates), RIGId (a SHAPes option that creates a rigid body

object), SHAKA4 (a SHAKe subcommand of FOUR for con-

straints in the 4th spatial dimension), and PATH (path con-

straints to keep the structures on a particular hyperplane, used

with the RXNCOR facility; see Section VII.C.). SHAKe allows

the use of a longer timestep, typically 2 fs, when integrating

Newton’s equations of motion.351,354,357 The lonepair facility is

a general constraint code for all ‘‘massless’’ particles in

CHARMM, with the exception of those in the ST2 water model.

On each iteration, massless particle positions are determined rel-

ative to atomic positions, and the forces calculated on massless

particles are transferred to atoms in such a manner as to pre-

serve the net torque and force. The use of the CONStrain FIX

command can significantly improve speed, since it results in the

removal of constrained atomic pairs or groups from the non-

bonded lists required for the calculation of the energy and

forces. All of these constraints include a pressure correction

term, which arises from the fictitious forces on the system that

maintains the constraints.

Ensembles for Dynamics

Several constant temperature (NVT, canonical ensemble) and

pressure (NPT) methods can be used with the equations-of-

motion integrators. Constant temperature and pressure simula-

tions can be performed with CHARMM using methods that are

based on the ideas of extended Lagrangian dynamics.331,358 This

approach ensures that well-defined statistical ensembles are

achieved. Also, multitemperature controls are available, through

which the temperatures of different parts of the system are

coupled to different thermostats. This can aid in equilibrating

the system or in keeping the system at the desired temperature

when its components (e.g., protein and its water environment)

have significantly different properties; an interesting application

of such multiple thermostats involved keeping a protein and its

solvent shell at different temperatures.359 The Nosé–Hoover heat

bath methods work with the leap-frog Verlet and velocity-Verlet

integrators in CHARMM. For NPT simulations, the Hoover heat

bath method can be used in conjunction with a pressure coupling

algorithm designated as the Langevin Piston.360 This is a robust

method in which Langevin-type random and frictional forces are

applied to piston degrees of freedom (e.g., during MD equilibra-

tion) to obtain a valid thermodynamic ensemble. Methods for

other ensembles as variants of this approach are available in

CHARMM, as described in the work by Zhang et al.340 A corre-

sponding method is used in simulations of lipid bilayers and

other interfacial systems in which a constant surface tension is

maintained.

A modified velocity-Verlet algorithm is available to simulate

systems in which induced polarizability is represented with clas-

sical Drude oscillators that are treated as auxiliary dynamical

degrees of freedom.104 The familiar SCF regime is simulated if

the auxiliary Drude particles are reset to their local energy-mini-

mum positions after every timestep of the physical atoms, but

this procedure is computationally inefficient. The SCF regime

can be approximated efficiently with two separate Nosé–Hoover

thermostats acting on the polarizable atoms and their auxiliary

Drude particles. The first thermostat, coupled to the center-of-

mass of the atom-Drude pair, keeps the true physical degrees of

freedom at any desired temperature. The second low-temperature

thermostat (�1 K), acts on the relative atom-Drude motion

within the reference frame of the center-of-mass of each pair to

control the amplitude of the classical oscillators relative to their

local energy minima. In its CHARMM implementation, the dou-

ble-thermostat velocity-Verlet algorithm allows efficient SCF-

like constant-pressure, constant-temperature MD simulations of

systems of polarizable molecules with a timestep of �1 fs.

In addition, a modified Berendsen method361 has been imple-

mented that allows for both constant temperature and constant

pressure simulations. Although the Berendsen approach works

well for small systems and for very weak coupling constants,

and has been widely used, it may lead to differential heating of

heterogeneous systems, most notably interfacial systems.360 Fur-

thermore, the resulting MD trajectory does not correspond to
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any thermodynamic ensemble. Thus, the methods for NVT and

NPT simulations described earlier are recommended over this

method, despite its advantage of ease of use.

Non-Verlet Integrators

Langevin dynamics (LD) simulations, which propagate the sys-

tem coordinates with the Langevin equation,362 rather than New-

ton’s equations, include random and frictional forces that mimic

the effects of the environment on the dynamics of the simulated

system.363,364 Coupling a fully solvated system to a Langevin

heatbath is an effective way of maintaining a constant-tempera-

ture ensemble. This type of Langevin heatbath coupling can be

used as a complement to the implicit solvation methods (Section

III.D.), which treat the effect of solvent on the solute energy but

do not include the frictional and dissipative properties of

solvent. LD is also used in stochastic boundary simulations. It is

suitable for studying long-time-scale events that occur in macro-

molecules, such as protein folding. LD is also useful for small

systems, such as small molecules in the gas phase, where the

temperature based on the atomic velocities is poorly defined and

the free energy transfer between modes can be very slow.

V.C. Normal Mode Methods and Harmonic Dynamics

CHARMM has a comprehensive utility for molecular vibrational

analysis, called VIBRAN. The VIBRAN module includes basic

tools for calculating normal modes of vibration, either with the

full atomic basis or with a reduced basis in which some degrees

of freedom are constrained. An example of the latter is the cal-

culation of normal modes using only the dihedral angle degrees

of freedom. The module also has the capacity to generate quasi-

harmonic modes of vibration from MD simulations with either

the full or reduced basis. Quasi-harmonic modes of vibration are

the normal modes of vibration of a harmonic potential energy

surface that would generate the same fluctuation matrix, when

every mode is populated with kBT* of energy, as that calculated

from an MD simulation. There is also an extensive set of analy-

sis tools that facilitate the analysis of normal modes. The

VIBRAN facility was summarized in the original CHARMM ar-

ticle22 and later described in considerable detail.365–367 This sec-

tion will primarily focus on developments that have occurred

since the latter publications.

The VIBRAN module provides the means for calculating

thermodynamic properties of a system from the vibrational anal-

ysis in terms of normal or quasi-harmonic modes. An example

is the calculation of the configurational entropy from normal

modes obtained via quasi-harmonic analysis. These results can

be combined with the overall rotational and translational

contribution to the entropy and with other energetic information

(i.e., vibrational enthalpies, free energies of solvation from contin-

uum electrostatic methods) to obtain the free energies of ligand–

protein,368 protein–protein,369 or protein–DNA interactions.141

There has been considerable effort in developing efficient

methods for the harmonic analysis of very large biomolecules

when only a few lowest-frequency modes are of interest. A

number of studies370–374 have shown that low-frequency modes,

which reflect the natural flexibility of the system, often provide

important functional information about biomolecules that

undergo significant conformational transitions. One approach

involves an iterative diagonalization in a mixed basis

(DIMB),375,376 which requires considerably less computer mem-

ory than the full basis calculation, yet converges to the same

result. The method involves repetitive reduced-basis diagonaliza-

tions, where the reduced bases are constructed partially from the

approximate eigenvectors and from the Cartesian coordinates.

Another approach breaks the system into rigid blocks, typically

one residue each, or larger. Because of their collective nature,

the low-frequency modes of the system can be computed rather

accurately with such a block normal mode (BNM; rotational-

translation-block) approach.377,378 In this approach, the atomic

Hessian is projected into a subspace spanned by the rotational

and translational motions of the blocks. The projection dramati-

cally reduces the size of the matrix to be diagonalized and thus

the cost of computation. The current implementation in

CHARMM also has the option of using an iterative diagonaliza-

tion procedure for sparse matrices, which makes it possible to

obtain low-frequency modes of large biomolecular assemblies

such as the 30S and 50S ribosome.379 Compared with even more

simplified approaches such as the elastic network model380,381

(which is also available in CHARMM; see Section VII.E.), the

BNM method has the advantage of using the full physical poten-

tial energy function [eq. (1)], which makes it possible to obtain

detailed information for many kinds of biomolecules382,383 and

permits the inclusion of co-factors and ligands in a straightfor-

ward way. A comparison of CHARMM BNM383 with a series of

elastic models demonstrated the superiority of the former for cal-

culating anisotropic B factors.

Normal mode calculations can also be carried out with QM/

MM potential functions.384 This capability is especially useful

for spectroscopic characterization of the active sites of metal-

loenzymes,379 characterization of stationary points along reaction

pathways in enzymes, and estimates of the vibrational contribu-

tions to the activation free energy for reactions in complex sys-

tems.254,385 With careful parameterization, QM/MM vibrational

analysis can also be used to compute nonlinear infrared spec-

tra,386 which contain valuable information regarding the fast

time-scale dynamics of condensed-phase systems. The standard

implementation in the release versions of CHARMM (Section

XI.) computes the second derivative matrix using finite differen-

ces of the analytical first derivatives for many of the QM meth-

ods, including AM1, PM3, and SCC-DFTB, which are included

in CHARMM (Section III.E.), and other ab initio or density

functional methods that are available in separate QM packages.

QM/MM analytic second derivative support has been imple-

mented for the Q-Chem/CHARMM interface.387 Also, analytical

computation of QM/MM second derivatives384 are currently

available in a specialized version of CHARMM in conjunction

with the GAMESS-US package.286,287

Quasi-Harmonic Analysis

Quasi-harmonic normal modes can be extracted from a trajec-

tory by diagonalizing the mass-weighted covariance matrix of*kB is the Boltzmann constant; T is the absolute temperature.
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the atomic displacements from their average positions.365 These

modes are similar to the normal modes obtained from diagonal-

ization of the Hessian, but contain anharmonic contributions as

well. Once the covariance matrix has been obtained, the diago-

nalization can be performed on the submatrix corresponding to

any subset of atoms, effectively allowing the analysis to be

applied to individual residues, or just to the backbone or side

chains. The modes, harmonic or quasi-harmonic, can be saved to

disk for visualization, or their character can be further analyzed

in terms of the contributions of individual atoms. The eigenval-

ues, which are related to the frequencies of the motions, can be

inserted into the 3n-dimensional harmonic oscillator expressions

for the entropy, enthalpy or heat capacity388 of the (sub)system,

where n is the number of atoms. The calculation of converged

quasi-harmonic entropies often requires lengthy trajectories.389

In addition to the configurational (vibrational) entropy, the rigid-

body translational/rotational contribution to the entropy can also

be computed from a trajectory. For this, the (quasi)harmonic

interpretation is not required and, in the absence of mass weight-

ing, the method is identical to the standard multivariate statisti-

cal method of principal component analysis (PCA),390 with the

computed frequencies inversely proportional to the variances of

the atomic displacements of the trajectory along the eigenvec-

tors. PCA has been used to extract dominant motions in proteins

in, for example, ‘‘essential dynamics.’’391

V.D. Monte Carlo Methods

In Monte Carlo (MC) simulations, random changes (moves)

made to the configuration of a system are accepted or rejected

in such a way as to obtain a chain of states that samples a well-

defined probability distribution.392 MC need not follow a realis-

tic path for ensemble averages to converge, which makes it use-

ful for simulating relaxation processes that occur on timescales

that are much longer than the fastest motions of the system (typ-

ically bond stretches in biomolecular systems). Despite this

advantage, there are far fewer MC than MD studies to date

because initial comparisons between the two methods suggested

that MC samples protein configurations inefficiently.393 How-

ever, improved move sets now allow much faster decorrelation

of observables, making MC the method of choice in many cases

requiring the search of a large conformational space.394,395 Cer-

tain features and applications of the MC module in CHARMM

are summarized here; for more details, see Hu et al.395

Background

The sampling of a system with a series of (pseudo)randomly

generated states is a Monte Carlo process. From these states, an

estimate of the thermal average of quantity B over all states xi

in a system at temperature T is given by

Bh i �

Pn
i¼1

BðxiÞ expð�EðxiÞ=kBTÞ
PðxiÞPn

i¼1

expð�EðxiÞ=kBTÞ
PðxiÞ

; (9)

where n is the number of sampled states, E(xi) is the energy of

xi and P(xi) is the probability of xi appearing in the sampled

population. Metropolis et al. (1953)392 first noted that an effi-

cient choice of P(xi) is the Boltzmann probability itself—i.e.,

P(xi) ! exp (2E(xi)/kBT). In this case, eq. (9) reduces to a sim-

ple arithmetic average: hBi �
P

n
i¼1 B(xi)/n. One of the aims of

Monte Carlo calculations is to sample the system according to the

canonical probability distribution; many other importance sam-

pling methods are based on a similar approach. In the Metropolis

method, this weighting of sampled states can be achieved by

accepting or rejecting a series of changes from a predefined set of

possible ones (a move set) according to the acceptance probability

Pacc,i � min(1,exp(2DEi/kBT)), where DEi is the change in

energy between the ith state (conformation) and the previously

accepted one. The series of accepted states so generated is

referred to as a Markov chain. The Metropolis method satisfies

the condition of detailed balance, which implies that, at equilib-

rium, the average number of moves between two arbitrary states

is the same in either direction; this is sufficient (though not

necessary) for sampling in the canonical ensemble.

Ensembles

MC in CHARMM can sample from the canonical (NVT),392 iso-

thermal-isobaric (NPT),396 and grand canonical (lVT)397 ensem-

bles. Because the grand canonical MC algorithm allows particles

to be inserted into and deleted from the system as though

exchanging with a bulk solvent reservoir of known excess chem-

ical potential (l), it is very useful for solvating macromolecules,

especially ones with restricted access to cavities.398 Woo

et al.397 describe the grand canonical MC implementation in

CHARMM, which includes cavity-bias399 and grid-based400

algorithms for selecting the sites of insertion; Hu et al.401 cali-

brate the method to determine the value of l required to repro-

duce bulk water densities with the TIP3 model48,50 and standard

nonbonded cutoffs in a periodic system.

In addition to the physically meaningful ensembles described

earlier, MC in CHARMM can sample with a number of addi-

tional weighting schemes. These include the Tsallis or ‘‘gener-

alized’’ ensemble402,403 and the multicanonical or constant-en-

tropy ensemble.404,405 These methods accelerate the exploration

of rough energy landscapes by allowing some population of

high-energy configurations but still predominantly sample low-

energy states, in contrast to simulations at elevated temperatures.

In both cases, it is straightforward to reweight the states sampled

to recover canonical averages. Multicanonical MC was used by

Dinner et al.165 to interpret fluorescence T-jump experiments

for peptide folding; the Wang-Landau generalization of the

method,406,407 which is conceptually similar to adaptive umbrella

sampling,408 is also now available in the MC module of

CHARMM.409

Move Sets

An MC simulation in CHARMM consists of two phases: the

choice of a move set and its subsequent use to generate a trajec-

tory. To optimize flexibility and speed, these two phases are

handled separately. Only a small number of commands and

atom selections are required to construct a move set because
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several predefined types of moves, which can be combined, are

provided. Certain types of moves can be used with any of the

ensembles: rigid-body translations and rotations of selected sets

of atoms and rotations of dihedral angles individually or in

concert.410–413 Some moves (e.g., rigid body translations and

rotations) can be linked and applied together.395 Changes to the

system volume396 and particle number397 are included for the

constant pressure and constant chemical potential methods

described earlier. Also, MC can call the leap-frog integrator in

CHARMM to generate trial configurations of the system (hybrid

MC414,415) in simulations that sample states with Boltzmann or

Tsallis statistics. A self-guided form of hybrid MC is avail-

able416 (see Section VII.B.).

For each type of move, it is necessary to specify the maxi-

mum extent the system can change in one step and the relative

frequency of application. The allowed step sizes can be adjusted

for individual moves automatically using the acceptance ratio

and dynamically optimized MC methods417 (see Hu et al.395 for

a discussion of their impact on detailed balance). Hu et al.395

determined the target acceptance rates that yielded the most

rapid exploration of configuration space for different types of

moves for peptides and found that they ranged from 20 to 95%,

in contrast to the conventional belief that 50% yields the most

efficient sampling. These authors went on to adjust the frequen-

cies of applying different types of moves with a heuristic MC

procedure to obtain peptide move sets that outperformed MD.

Comparison of these move sets makes clear that the optimal val-

ues of move set parameters differ from one system to another.

Hopefully, exploration of MC move sets for other systems at a

similar level of detail will lead to ‘‘rules of thumb’’ for different

classes of biomolecules.

Monte Carlo Minimization

With the exception of hybrid MC moves, any of the moves

described earlier can be followed by minimization prior to

application of the acceptance criterion.418 Although this

approach does not satisfy detailed balance, it is useful for

applications like structure prediction and ligand design. Either

the steepest descents or the conjugate gradient minimization

algorithms can be employed. The former is preferable in most

circumstances since it is much faster and the primary function

of the minimization is to eliminate steric clashes. An alterna-

tive implementation that exploits the dihedral angle biasing

method of Abagyan and Totrov419 and allows simulated anneal-

ing prior to applying the acceptance criterion is also available

in CHARMM (the Monte Carlo Minimization/Annealing or

MCMA method.143,418)

V.E. Grid-Based Searches

As an alternative to the Monte Carlo approach, energy-based

searches of conformational space can be carried out in a system-

atic and/or deterministic manner. Such an approach has proven

useful for energy mapping of protein side chain rotational angles

and side chain structure prediction,45,46,420–422 as well as tertiary

structure prediction of proteins, given the known secondary

structural elements175 (Petrella, R.J.; in preparation). The Z

Module in CHARMM (keyword ZEROM) generalizes this type

of approach to facilitate various types of grid-based calculations

by partitioning the conformational space into subspaces and sys-

tematizing the search. It allows for build-up procedures in which

large parts of the system are generated from low-energy con-

formers of smaller parts, and for the inclusion of statistical infor-

mation (i.e., rotamer libraries). The Z module has recently been

used in molecular docking and loop prediction calculations to

predict the structure of the CMV UL44 processivity factor com-

plexed with a DNA oligomer.423

VI. Biased Sampling and Free Energy Methods

Thermodynamic and kinetic properties of a system such as free

energy differences, reaction paths, and conformational free

energy surfaces can be calculated, in principle, from sufficiently

long and detailed MD simulations in an appropriate ensemble.

In practice, more elaborate schemes, many of which involve

nonphysical states of the system, often can be used to reduce the

required computational time. Some of the approaches have been

used in CHARMM since its inception, while others have been

introduced more recently. One important example appears in the

methods for calculating free energy differences between differ-

ent thermodynamic states of a system by simulating nonphysical

‘‘alchemical’’ transformations.125,424–427 The methods used to

perform computational alchemy have a rigorous basis in statisti-

cal mechanics, and they represent extremely powerful tools for

exploring quantities that correspond to experimental observables,

while avoiding the need for prohibitively costly computations. A

number of techniques are summarized here; they include free

energy simulation methods, simulations in 4D space, multiple

copy simulations, and discretized Feynman path integral meth-

ods. Umbrella sampling, as used to speed up convergence of

estimates and to determine potentials of mean force, and compu-

tational methods specifically designed to treat conformational

transitions and reaction pathways are described in Section VII.

VI.A. Free Energy Methods

The core of any free energy simulation methodology is a hybrid

potential energy function U(r,k), which depends on the so-called

coupling parameter, k. In the simplest case of a linear depend-

ence on k,

Uðr; kÞ ¼ U0ðrÞ þ ð1� kÞ UiðrÞ þ k UfðrÞ (10)

where U0(r) is the part of the potential energy that does not

change, Ui(r) contains the energy terms unique to the initial

state i, and Uf(r) contains the energy terms unique to the final

state f. For values of the coupling parameter 0 � k � 1, eq.

(10) can describe the initial (k 5 0), final (k 5 1) and unphysi-

cal (alchemical) intermediate states of the system. Because the

convergence of the free energy depends on the size of the

change between two states, it is generally necessary to proceed

in a step-wise fashion from the initial to final systems, by utiliz-

ing alchemical intermediate states.

Three different modules, BLOCK,428 TSM,429,430 and PERT,

which were all introduced circa 1986, are available within
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CHARMM for performing free energy computations. They make

it possible to calculate the free energy difference between two

systems having different potential energy functions, Ui and

Uf, such as two inhibitors bound to an enzyme active

site.125,424,426,427,431–436 With any of the three methods, free

energy differences can be computed by both thermodynamic
integration (TI)437 and the exponential formula, often also

referred to as thermodynamic perturbation (TP).438 For TI, the

(Helmholtz) free energy difference, DA, between the initial (i)

and final (f) states is given by:

DA ¼ Af � Ai ¼
Z1
0

dk
@Uðr; kÞ

@k

	 

k

; (11)

where the h ik symbol denotes the ensemble average over the

canonical distribution corresponding to k. For thermodynamic

perturbation (i.e., the exponential formula),

DA ¼ Af � Ai ¼
Xn�1

i¼0

�kBT ln
�
expð�DUki

=kBTÞ
�
kig

(12)

where DU(ki) 5 U(ki11) 2 U(ki) is the energy difference

between the perturbed (ki11) and unperturbed (ki) system at the

ith value of k, n is the total number of sampling windows, k0 5

0, kn 5 1, and h iki
denotes the ensemble average over the ca-

nonical distribution at ki. The two approaches are formally

equivalent.7

TI can be carried out by windowing, i.e., by performing dis-

crete simulations with specified values of k. The ensemble aver-

ages are then calculated for each window and the integration is

done numerically, e.g. using the trapezoidal rule. Alternatively,

TI can be performed by slow-growth (SG), in which k is varied

gradually over the course of a single simulation.439 Although the

use of SG has been discouraged because of the ‘‘Hamiltonian

lag’’ problem,436 SG-type calculations can be utilized to carry

out so-called ‘‘fast-growth’’ simulations in combination with the

Jarzynski equality;440,441 see also later. In both the TI or TP

methods, the coupling does not need to be linear. Any smooth

functional form in k can be used, provided k is varied slowly

enough. Nonlinear coupling has been used to overcome the end-

point singularity problem (van der Waals endpoint problem; see

later).442–444

The entropy and energy contributions to a free energy change

can also be determined. One way is to calculate the free energy

at several temperatures and evaluate the temperature derivative

by finite differences, as in a laboratory experiment.445,446 An al-

ternative, but related, method is to perform a direct evaluation

of the derivatives of the partition function by finite differences

in a single simulation.447 In CHARMM, this is implemented in

the TSM module.

Detailed analysis based on statistical mechanics shows that

several choices for U(r,k) can be used to compute the free

energy difference, leading to a number of different computa-

tional schemes for performing free energy simulations.424,436,448

Although all three free energy modules in CHARMM are based

on eq. (10), at least in basic mode of operation, the only formal

requirement for the functional form of U(r,k) is that it obey the

boundary conditions U(r,k 5 0) 5 Ui and U(r,k 5 1) 5 Uf.

The different realizations of U(r,k) give rise to the primary dif-

ferences among the three modules; in particular BLOCK and

TSM use a so-called dual-topology approach, and PERT uses a

single-topology approach.448–450

The BLOCK Module

The BLOCK module428 provides a general method for scaling

energies and forces between selected groups of atoms. Although

originally designed to facilitate the computation and analysis of

free energy simulations, the same framework can be used in

other applications for which systematic manipulation of relative

strengths of interactions is required, for example in conjunction

with the general REPLICA module (Section VI.C.). It also pro-

vides the basis for k-dynamics (see later) and chaperoned
alchemical free energy simulations.451

Since, as mentioned, BLOCK adopts the dual-topology

approach, the parts of the system which are not the same in the

initial and final state have to be defined simultaneously. The

hybrid potential energy function in BLOCK can be written as

Uðr; kÞ ¼ Uðr0; ri; rf ; kÞ
¼ U0ðr0Þ þ ð1� kÞ Uiðr0; riÞ þ k Ufðr0; rfÞ ð13Þ

The coordinates r0, ri, and rf, respectively, are associated with

the atoms that do not change, those that are present only in the

initial state, and those that are present only in the final state.

When setting up a free energy simulation using BLOCK, the

user first has to assign the atoms in the system into ‘‘blocks,’’

according to these three categories. For example, in the simula-

tion of the mutation of a single protein side chain, atoms com-

mon to the wild type and mutant might be assigned to block 1

[atom coordinates r0 in eq. (13)], atoms unique to the wild type

to block 2 [atom coordinates ri in eq. (13)], and atoms unique to

the mutant to block 3 [atom coordinates rf in eq. (13)]. Next,

the user has to define interaction coefficients to describe the

interactions within each block and between each pair of blocks.

Through the combination of atom assignments into blocks and

the setting of the interaction coefficients, the user realizes the

hybrid potential energy function [eq. (13)]. Optionally, specific

energy terms can be omitted from this partitioning or scaled dif-

ferently. This capability is important, for example, in the correct

treatment of bonded interactions in alchemical dual-topology

free energy simulations.449,450,452 These scaled interactions

(energies and forces, but not second derivatives) are used for

subsequent operations, such as energy evaluation, minimization,

and MD simulation. In practice, the user carries out a series of

simulations at a set of k values. The trajectories saved during

the MD simulations can then be analyzed using special tools

provided within the BLOCK facility to extract and average the

quantities of interest, e.g., [cf. eq. (13)], h@U/@k ik 5 hUf(r0,rf)

2 Ui(r0,ri)ik for TI. This analysis is extremely efficient (only a

small fraction of all the interactions in the system need to be

evaluated) and can be run repeatedly to obtain component con-

tributions (i.e., estimates of the contribution of different parts of

the system) to the free energy change. Near the endpoints (k 5

0 or 1), van der Waals singularities can cause convergence prob-
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lems,453 which can be circumvented with the use of a soft core

potential (see later). The BLOCK facility also has built-in func-

tionalities for carrying out slow-growth free energy simulations.

Several publications provide illustrative applications of the

BLOCK facility.223,428,449,450 Yang et al. used free energy simu-

lations with BLOCK to develop a detailed mechanism for F1F0-

ATP synthase.14 BLOCK was also used in a study analyzing

how DNA repair proteins distinguish the mutagenic lesion 8-

oxoguanine from its normal counterpart, guaninine.454 Because

of its generality, the module continues to form the basis for new

methodological developments (also, see later).

The TSM Module

The thermodynamic simulation methods (TSM) module429,430

was developed concurrently with the BLOCK facility to imple-

ment TI- and TP-based free energy methods. TSM, like

BLOCK, partitions the system into multiple components

(‘‘reactants,’’ ‘‘products,’’ and the ‘‘environment’’) and permits

simulations to be carried out either for a fixed value of k or in

slow-growth mode. Although mostly a dual-topology method,

one so-called collocated atom, can be shared between the reac-

tant and product state, conformational free energy surfaces can

be constructed within the TSM framework.430 Applications of

the TSM-based methods include protein–ligand,455,456 protein–

DNA457,458 interaction free energies, and conformational free

energies.430,459

The PERT Module

The PERT module can be used to calculate alchemical, as well

as conformational free energy differences. In contrast to the

BLOCK and TSM free energy modules just described, PERT

uses a single topology-type hybrid potential energy function

U(r; k).448,449 All energy terms, therefore, involve the same

coordinate set r; i.e., the energy function has the form of eq.

(10), rather than eq. (13). Although the energy in PERT has a

linear dependence on k, in accord with eq. (10), a variant of the

method employs a ‘‘soft core’’ potential (see later). In the case

of an alchemical free energy mutation in which the number of

atoms is not the same in the initial and final states, so-called

‘‘dummy’’ atoms must be introduced.

A PERT calculation is initiated by specifying the part of the

system to be subjected to the alchemical mutation. This informa-

tion is used to construct three nonbonded pair lists: one each for

(i) interactions in the unchanged part of the system, (ii) interac-

tions with and within the initial state, and (iii) interactions with

and within the final state. The separate lists are needed for effi-

ciency so that nonbonded terms between atoms in the unchanged

part of the system are only computed once. Bonded and restraint

energy terms, on the other hand, are computed twice, once for

the initial state, U0,bonded(r) 1 Ui,bonded(r), and once for the final

state, U0,bonded(r) 1 Uf,bonded(r). (The computational overhead of

computing U0,bonded(r) twice is acceptable since calculation of

bonded interactions is computationally inexpensive.) The initial

PSF, as well as the harmonic, dihedral angle, NOE and general

geometric (GEO option of the MMFP module) restraint lists, are

saved as the initial state (k 5 0). The PSF and the three types

of restraints can then be modified to effect the alchemical muta-

tion and/or a conformational change leading to the end state (k
5 1). The command MKPRes can be used to automatically gen-

erate the PSF patch defining the hybrid residues that are needed

for carrying out alchemical free energy simulations. In a proce-

dure that has similarities with both the single- and dual-topology

approaches in free energy calculations of mutations, the com-

mand defines hybrid residues containing dummy atoms in such a

way that all covalent bond contributions are held constant

throughout the calculations and only the nonbonded interactions

are altered. Use of this command avoids the cumbersome (and

error-prone) process of modifying the PSF manually.

When PERT is active, energy calculations, minimizations,

normal mode calculations and MD simulations can be carried

out for any value of k, 0 � k � 1. In MD one can specify the

change of the coupling parameter as a function of simulation

length, as well as how many steps are used for (re-) equilibra-

tion versus accumulation of the respective ensemble averages

required for TI and TP. A k schedule file can be read which

allows explicit control of k windows. This schedule is usually

determined from a short exploratory simulation so that the fluc-

tuation of the energy difference in any given window is on the

order of kBT. PERT computes the quantities required to compute

free energy differences by TI and TP ‘‘on the fly,’’ so that in

normal usage no postprocessing of trajectories is needed.

PERT includes all contributions resulting from alchemical

changes of bonded energy terms.449,450,452,460 Special attention is

required if SHAKE354 is applied to bonds that have different

lengths in the initial and final state. Following an approach out-

lined by van Gunsteren et al.,461 constraint free energy contribu-

tions are computed using a modified SHAKE routine.450 PERT

runs in parallel and supports SSBP and GSBP, as well as the

Ewald-based methods for computing electrostatic interactions.

PERT, like BLOCK, can produce an atom-based free energy

partitioning that provides useful insights when comparing similar

free energy simulations.462 PERT has also been used in meth-

odological studies focusing on the treatment of bonded interac-

tions in alchemical free energy simulations,449,450,452 as well as

in an analysis of the effect of conformational substates on the

precision and accuracy of free energy estimates.463 In addition,

PERT has been employed in several application-oriented studies.

A set of optimal atomic radii for PB continuum electrostatics

has been developed via a series of charging free energy compu-

tations executed with PERT.192,193 Deng and Roux computed

hydration free energies of amino acid side chain analogs.76 The

calculated values are in good agreement with experiment464 and

with the results of a more involved approach.75 Boresch et al.

computed relative solvation free energy differences of phospho-

phenol derivatives462; the results help to explain the binding

affinities of the corresponding phosphotyrosine mimetics to pro-

tein tyrosine phosphatase and SH2 domains. Several studies

using PERT have been carried out to determine absolute binding

free energies.465,76,466–469 The ‘‘virtual bond’’ algorithm intro-

duced by Boresch et al.466 is an implementation of the double

decoupling approach formulated by Gilson et al.470 whose deri-

vations generalized the restraint potential methods previously

introduced to correctly account for the standard state in comput-

ing the binding affinity of small molecules for protein
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cavities.465,471,472 Roux and coworkers have studied absolute

binding free energies in three proteins, the Src homology 2 do-

main of human Lck,467 T4 lysozyme,469 and FKBP12.468

Comparison of Methods

Each of the three modules, BLOCK, TSM, and PERT, has dif-

ferent strengths and weaknesses. This subsection attempts to pro-

vide some guidance for users in choosing the one that is the

most appropriate tool for a given problem.

An important decision is whether to use a single- (PERT) or

a dual-topology (BLOCK, TSM) free energy method. For

alchemical mutations of small to medium complexity (e.g., the

change of a methyl group into a hydroxyl group), single-topol-

ogy treatments are relatively direct and can be set up easily. For

complicated mutations, particularly those involving changes in

connectivity or ring formation, a pure single-topology approach

is not possible,448 and the use of a dual topology method is nec-

essary. The PERT method, while primarily intended for single

topology applications, can be used in a dual topology mode with

an appropriate set of dummy atoms.450,460 In applications

involving combined QM/MM calculations, dual topology has

been favored,454,473 although single topology calculations using

the PERT module are possible for simple alchemical transforma-

tions.474,475,474 TSM can be used to calculate free energy and

entropy differences simultaneously. PERT offers the best support

for Ewald summation. PERT requires no post-processing, which

can have practical advantages in distributed computing environ-

ments. On the other hand, BLOCK is a more versatile energy

partitioning tool. For example, it is relatively straightforward to

use BLOCK to compute free energy differences using Bennett’s

acceptance ratio method (BAR)476,477 and generalizations thereof

based on Crooks’ theorem.478,479

Many of the free energy methods in CHARMM have been

implemented by modifying the standard CHARMM energy rou-

tines, rather than introducing new ones. This approach makes

the standard routines more complex, but it facilitates the integra-

tion of the new methods with preexisting CHARMM functional-

ity. For example, Ewald summation has recently been introduced

in BLOCK (A. van der Vaart, private communication), is partly

supported by TSM, and is fully supported by PERT. On the

other hand, PERT in some cases requires the generic energy rou-

tines, which are not optimized for performance. In addition, the

PSSP method (a soft core method; see later) can only be used

for selected combinations of nonbonded options. Whether these

limitations are relevant depends on the specific requirements of

the application.

The Weighted-Histogram Analysis Method

Postprocessing of information from free energy simulations can

be used to achieve more precise estimates of free energy

changes using the weighted-histogram analysis method

(WHAM).480,481 WHAM minimizes the error in the estimates by

finding optimal weighting factors for the combination of simula-

tion data from overlapping windows with an iterative procedure.

It makes use of all the available data in the most efficient man-

ner, and can be used to calculate any kind of ensemble average

based on the conformations sampled in the simulations482

including the potential-of-mean-force along coordinates481,483–488

and free energy differences between different states.192,489,490

Soft Core Potentials

In alchemical free energy simulations, the use of a hybrid poten-

tial energy function containing a steep repulsive term (e.g. r212

LJ) can result in the ‘‘van der Waals endpoint’’ problem,453 partic-

ularly when the number of atoms changes in the alchemical trans-

formation and the coupling has a simple linear form. Near the

endpoints (i.e., at k 5 0 or 1), extremely large changes in the

forces as a function of k, which arise from the repulsive term, can

occur between ‘‘overlapping’’ atoms. Techniques for overcoming

this problem include the use of an analytic approximation453 and

the introduction of soft-core (SC) potentials for LJ and electro-

static interactions.442,443 In the SC method, the distance r between
two atoms is replaced by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ f ðkÞd

p
, where d is an adjustable

parameter; for energy terms belonging to the initial state f(k) 5 k,
and for energy terms belonging to the final state f(k) 5 1 2 k.
Several versions of SC potentials are available for use with the

various free energy modules of CHARMM. The SC method of

Zacharias et al.442 is implemented in PERT for LJ and electro-

static interactions in the PERT-separation-shifted-potential

(PSSP).452,491 The PSSP method has been used in calculations of

absolute binding free energies.466 A corresponding method can be

used with the BLOCK module.492 A related SC technique, based

on the Weeks-Chandler-Andersen separation493 of the repulsive

and attractive part of the LJ potential, is also available.76,467–469

Simulations in 4D space can also reduce the endpoint singularity

problem in free energy simulations (see later).443,494

Free Energy Calculations with k-Dynamics

A methodology called k-dynamics has been developed and imple-

mented in CHARMM.495,496 It extends the free energy perturba-

tion approach by adding multiple variables to control the evolu-

tion of interactions; these variables compete to yield the optimal

free energy for the conformation and chemical configuration of a

group of ligands with a common receptor. The approach builds on

ideas put forward by Jorgensen and Ravimohan,497 Liu and

Berne,498 and Tidor.499 In k-dynamics, a hybrid Hamiltonian

(potential), somewhat like that in eq. (10) for free energy simula-

tions, is used to effect a change of one set of chemical parameters

into another via a pathway that depends on a number of coupling

variables, {ki}. In this way, the alchemical mapping of one mole-

cule into another differentially scales the components of the sol-

ute–solvent interaction terms. One can also consider multiple

chemical species, each coupled to a different k variable as

described in eq. (14), or multiple chemical functionalities on a

chemical framework. If there are n types of parameters that are

transformed in the overall mapping, and if the transformation of

each is controlled by one k variable, i.e., one member of the set

{ki}, then the mapping between two molecules may be achieved

through the definition of a Hamiltonian of the general form

HRxnðfkigÞ ¼ HRðfki; i ¼ 1; ngÞ þ HPðfki; i ¼ 1; ngÞ þ HEnv;

(14)
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where HEnv includes the kinetic and mutual interaction energy of

the atoms which are not being transformed (the environment

atoms) and HR(P)({ki; i 5 1,n}) denotes the reactant (product)

Hamiltonian composed of three elements: the kinetic energy of

the reactant (product) atoms, the self potential energy of the reac-

tant (product) atoms, i.e., the reactant–reactant (product–product)

interaction energy, and the potential energy of interaction between

the reactant (product) and the environment atoms. HRxn({ki}) is a

valid mapping for use in free energy simulations if the endpoints,

where {ki} 5 {0} and {ki} 5 {1}, correspond to the Hamilto-

nians for the reactant and product states, respectively. The ele-

ments in the {ki} vector can take on arbitrary and independent

values in intermediate regions. To achieve maximum efficiency in

sampling in the k-space, the suggestion of Liu and Berne was fol-

lowed and an extended Hamiltonian,331,500 which contains the set

{ki} as dynamic variables, is employed in the CHARMM imple-

mentation. The coupling between spatial coordinates and energy

parameters is through the k dependence of HRxn. This Hamilto-

nian has parallels to that used by the Pettitt group to explore ther-

modynamics in the ‘‘Grand’’ ensembles.500 From the extended

Hamiltonian, the equations of motion for the extended system are

readily derived.331 An alternative implementation of the extended

Hamiltonian method501 which also uses the lambda parameter as

a dynamical variable, relies on TI to obtain the free energy differ-

ence. Trial applications indicate that a more rapid convergence is

achieved than with the standard TI approach due to dynamic reduc-

tion of k-coupled conformational barriers in the search space.

Other biases can also be included in the extended system

description. One key element, which enables rapid screening cal-

culations to be carried out for multiple ligands binding to a com-

mon receptor,495,502,503 is the imposition of a free energy bias

corresponding to half of a given thermodynamic cycle; e.g., the

solvation free energy for each species can be added to the

extended system Hamiltonian. To compute the relative free

energy of binding of L ligands to a common receptor, the poten-

tial energy is defined as

VRxnðfkig;XÞ ¼
XL

i¼1

k2i � ðViðXÞ � FiÞ þ VEnvðXÞ (15)

with
PL

i¼1 k
2
i ¼ 1 where each ligand is biased by a constant free

energy term, Fi, that corresponds to the solvation free energy of

that ligand, the total extent of the ligand-receptor interactions

(present in the terms Vi(X)) is normalized to unity, and X denotes

the configuration coordinates of the ligands, solvent, and receptor.

By carrying out a k-dynamics simulation of this extended hybrid

system and monitoring the probability of each ligand to achieve

unit values of k, the overall free energy change for any pair of

ligands is determined from the expression504

P�ðfki ¼ 1; kk 6¼i ¼ 0gÞ
P�ðfkj ¼ 1; kk 6¼j ¼ 0gÞ ¼ exp �b DARec

ij
� DFSolv

ij

h i� �
¼ exp �bDDABind

ij

� �
ð16Þ

where DARec
ij is the free energy difference for the half cycle cor-

responding to ligands i and j in the receptor binding pocket,

DFSolv
ij 5 Fi 2 Fj is the free energy half cycle corresponding to

solvation of the ligands and was input as a bias in the initial cal-

culations, and DDABind
ij is the overall relative free energy change

for the binding competition between ligands i and j.

Some Recent Developments in Free Energy Methodology

Free energy difference calculations, as described earlier, are

being more extensively utilized in biomolecular simulations. The

required computer time for obtaining converged results is

decreasing and the reliability of the results is improving, even as

the processes under study become more complex. Some impor-

tant conceptual/methodological advances have been introduced

recently. One new approach, called the MARE method478,479 is

a general method for estimating free energy changes from multi-

state data (such as those obtained in replica exchange calcula-

tions; see also Section VI.B.) by utilizing all of the simulated

data simultaneously. As an example, simulations are done with

replica exchange for the alchemical transformations of A to A1,

A2, and A3. It is shown that including all of the results in the

MARE scheme significantly reduces the error of each one rela-

tive to that using the data for A to A1, A to A2, and A to A3.

Separately, the formulation reduces the statistical error signifi-

cantly from previous estimators. The MARE approach was moti-

vated by the original Bennett acceptance ratio method,476,477,505

which makes use of the maximal likelihood evaluation of a free

energy perturbation from one state to another. Complementing

the MARE method, a k-WHAM approach has been introduced

to refine free energy derivative histograms with the maximum

likelihood method; see ref. 506. The efficiency of conforma-

tional sampling for problems where the change in the system is

local, as in point mutations in proteins or in ligand binding, can

be improved by the simulated scaling method507 and its replica

exchange version,492 in which only the potential energy of the

region of interest is scaled. To realize a random walk in scaling-

parameter space, the simulated scaling method has been imple-

mented with a Wang–Landau updating scheme and shows rapid

convergence of free energy calculations for model systems.507

An extension of this approach to chaperoned QM and QM/MM

free energy simulations451 has also been implemented.508 The

chaperone method uses a molecular mechanics force field for

the quantum region, so that unphysical geometries are prevented

in the k 5 0 and k 5 1 limits, where the QM terms are small.

The methodological improvements that have been described here

are examples of an ongoing effort to broaden the range of bio-

physically important problems to which free energy simulations

can be applied.

VI.B. The MMTSB Tool Set

The exploration of the accessible conformational space required

for thermodynamic analysis can be enhanced through the use of

advanced sampling techniques such as replica-exchange MD.509

To assist in doing such calculations, as well as those involving a

host of related ‘‘ensemble’’ simulation methods, the Multiscale

Modeling Tools for Structural Biology (MMTSB) set of perl-

based scripts and libraries510 has been interfaced with

CHARMM. This tool set provides a useful complement to

CHARMM for the control and manipulation of large-scale calcu-
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lations that are distributed over many computers. One key appli-

cation in this area is replica-exchange MD, which can be per-

formed within CHARMM. In this technique, several replicas of

the system of interest are prepared and simulated independently

over a range of temperatures (generally exponentially distrib-

uted) and then permitted to exchange with neighbors at intervals

chosen in accord with the Metropolis criterion. This enhances

the conformational diversity of the members of the composite

ensemble by allowing low-temperature, potentially trapped, con-

formations to access higher temperatures, and overcome barriers.

The method has been used together with GBMV implicit solvent

to analyze nucleoside conformational preferences.511 Replica-

exchange with CHARMM and the MMTSB tool set have been

employed in the study of protein and peptide folding, structure

prediction and refinement, and membrane-influenced peptide

folding, insertion, and assembly.132,137,229,302,512,513 Figure 5

illustrates two recent examples of the application of replica-

exchange sampling with implicit solvent models based on the

GB methodology discussed earlier.514

VI.C. Enhanced Sampling via Multiple Copy Methods

Multiple copy methods make possible the enhancement of phase

space sampling for a subset of variables of interest (e.g., selected

amino acid side chains in a protein), in the context of a surround-

ing set of such variables or bath (e.g., the remainder of the pro-

tein). The inspiration for these methods is based on the time-de-

pendent SCF approximation, a mean field approach developed for

the study of dynamical properties in electronic structure calcula-

tions.515 The first application of a multi-copy method to biomo-

lecular systems was the locally enhanced sampling (LES) method

introduced by Elber and Karplus516 in a study of ligand diffusion

in myoglobin. Trajectories were simultaneously propagated for

multiple copies of the ligands, but for only one copy of the pro-

tein, so as to greatly reduce the computational cost of the calcula-

tion. A similar approach is now commonly employed to determine

which chemical functional groups have a favorable interaction

with protein binding sites. The multiple copy simultaneous search

method (MCSS)517–519 floods the active site with multiple copies

of small chemical fragments and then performs simultaneous

energy minimization or quenched dynamics to find local minima

for the different ligands on the receptor-ligand interaction poten-

tial energy surface. Using a set of ligands allows the generation of

functionality maps for the characterization of intrinsic binding

site properties; these maps can subsequently be used as the basis

for ligand and combinatorial library design.519–522 Most of the

applications have employed a rigid protein model, in which case

the multiple copy approach is a book-keeping convenience rela-

tive to the execution of multiple, separate runs. However, an

extension of the MCSS method allows the use of a flexible pro-

tein, in which case a significant sampling efficiency is realized.518

The MCSS approach has inspired the analogous experimental

approaches of Multiple Solvent Crystal Structures523 and Struc-

ture-Activity-Relationships by NMR.524 A comparison of the ex-

perimental and simulation approaches has been described.525

Because of its widespread utility in pharmacological research, the

MCSS methodology is distributed as a separate program which

makes use of CHARMM. The multiple copy approach has also

been employed in a number of conformational sampling problems

such as the optimization of local side chain conformation,526 and

the global prediction of peptide conformation.323 Attempts to

derive thermodynamic properties from multi-copy simulations

have been made,527 and a number of studies have been carried out

to address the meaning of the temperature in the simulations and

the appropriate treatment of the ensembles involved.528–531

The REPLICA Module

Both LES and MCSS can be activated using the REPLica com-

mand, which is one of the fundamental system generation and

modification facilities in CHARMM. The REPLica command

was originally implemented so as to support a class of methods

that seek to improve the conformational sampling of a (usually

small) region of the molecular system by selective replication.

In principle, its function is to allow the specification of a part or

parts of the molecular system through an atom selection, and to

generate a specified number of copies (or replicas) of the

selected subsystem’s attributes (i.e., topological, structural and

selected physical properties). Conceptually, each set of replicas

constitutes a separate subsystem that is distinct from the primary

system. The REPLica command can be issued repeatedly to cre-

ate multiple subsystems. The key effect of the command is in

the nonbonded pair list generation routines, which underpin the

calculation of the nonbonded interactions in the energy function.

Atoms in different replicas within the same subsystem are

excluded from the nonbonded pair list and thus do not interact

with each other. Replicas in different subsystems do interact,

with appropriate mass and interaction scaling as specified using

other CHARMM facilities (e.g., BLOCK, Section VI.A., and

Section II.C.). Additional functionality has been built upon the

REPLICA formalism in CHARMM to support the location of

transition states and the estimation of discretized Feynman path

integrals (Section VI.D.).

VI.D. Discretized Feynman Path Integrals

Although QM calculations have an essential role in the evalua-

tion of classical semiempirical potential energy surfaces (see

Section III.E.) and the study of chemical reactions and catalysis

(see Section III.E. and VII.F.), the inclusion of quantum effects

can also be important in the calculation of the equilibrium prop-

erties and dynamics of a system, particularly at low tempera-

tures, where the effects can be significant.24,348 Quantum effects

on equilibrium properties can be investigated by exploiting the

isomorphism of the discretized Feynman path integral (DFPI)

representation of the density matrix with an effective classical

system obeying Boltzmann statistics.532 According to this

approach, an effective classical system is simulated in which

each quantized particle is replaced by a classical ring polymer,

or necklace, of P fictitious particles (beads) with a harmonic

spring between nearest neighbors along the ring; each bead

interacts with two neighbors and the last bead interacts with the

first. The spring constant decreases as a function of temperature

and mass of the nuclei, giving rise to more extended ring poly-
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mers, which correspond to the DFPI manifestation of familiar

quantum effects, such as zero-point vibration and tunneling. MD

or Monte Carlo simulations of the effective classical system (in

which some or all the particles are described by isomorphic ring

polymers) are valid for obtaining ensemble averages, although

they do not provide information on the time-dependent quantum

dynamics of the system.

In the current CHARMM implementation of DFPI, each

quantum atom is represented by the same number of beads.533

The creation of the beads utilizes the REPLICA facility

described earlier. The energy of the ring polymers is a sum of

harmonic terms between consecutive beads along the necklace

with spring constant KDFI 5 PkBT/L2, where L is the de Broglie

thermal wavelength of the quantum particle L 5 (h/2p)2/
(mkBT). These interactions are added to the CHARMM energy

through the command PINT. The interaction with other atoms is

introduced by means of the classical CHARMM potential energy

function scaled by 1/P; each bead interacts only with one bead

in other quantum atoms, and there is no interaction between

beads belonging to the same necklace, except for the spring

interaction within the necklace. The attribution and scaling of

the different interactions is specified with the BLOCk com-

mand.533

VI.E. Simulation in 4D Space

The addition of a nonphysical fourth spatial dimension to molec-

ular mechanics can increase the efficiency of sampling confor-

mational space.352 Enhanced sampling of conformations is

achieved because barriers in the physical (3D) space can be

circumvented by introducing the higher dimensionality of four

spatial dimensions. Energy and forces are computed in 4D by

adding a fourth value, w, to the atomic coordinates (x,y,z); in

CHARMM, this is done through the use of the VER4 dynamics

integrator (see also Section V.B.). After initial assignment of the

4D coordinates and velocities, a harmonic energy term allows

control of the embedding of the system in the fourth dimension;

an increase in the associated force constant of this term leads to

smaller w values, thereby projecting the system into 3D space.

MD in four dimensions has been applied to problems related to

protein structure determination534,535 and free energy calcula-

tions.443,494 MD in 4D space searches a large enough conforma-

tional radius to allow the use of random-coil configurations for

initial coordinates.536 The use of a fourth spatial dimension has

been shown to be advantageous for calculating free energies of

solvation and of ligand binding affinity whereby the solute non-

bonded interactions are coupled to the system through w, and a

PMF (4D-PMF) is calculated by umbrella sampling over the

range w 5 0 to w 5 1 corresponding to the reversible abstrac-

tion of the solute from the solvent or binding site.494,537 In these

studies, the approach resulted in accurate solvation free energy

estimates, and converged efficiently without the van der Waals

endpoint problems experienced with k-scaling of nonbonded

interactions (see Section VI.A.). The 4D-PMF method is simple

to implement because it is easily generalized to all LJ and

Coulombic nonbonded interactions.

VII. Reaction Paths, Energy, and

Free Energy Profiles

An important problem in molecular modeling is the determina-

tion of the minimum energy or free energy pathway and the

transition rate between two different conformations. Many bio-

molecular processes involve large-scale conformational changes

in the structure of the system.13,300,538,539 Often the transition is

a rare event, occurring on a timescale well beyond the reach of

conventional MD (on the order of 100 ns or longer for large sys-

tems). Consequently, specialized approaches must be used to

observe such transitions in simulation.

Several simulation methods have been developed to deter-

mine minimum energy and free energy pathways on multidimen-

sional potential surfaces of complex biomolecules. These meth-

ods vary in the details of the path sampling procedures they

employ, whether they use reaction coordinates, and, for those

that do, the types of reaction coordinates for which they are best

suited. Reaction coordinates are the degrees of freedom, or func-

tions thereof, by which the pathway is defined. For many calcu-

lations, they are a small number (one to three) of geometric pa-

rameters (e.g., RMSD between initial and final states, certain

bond angles), but can include order parameters of any type (e.g.,

fraction of native contacts, number of hydrogen bonds) or num-

ber. The term ‘‘reaction path,’’ which originated in the study of

chemical reactions, is now used more generally to refer to the

pathway of a molecule between two end states in conformational

or chemical space. Both the minimum energy path (MEP),

which provides the energy, and the PMF along a path, which

provides the free energy, can be calculated with CHARMM.

The MEP is the path on the potential surface that connects

the reactant state to the product state (or two intermediate states

if there is a multibarrier transition) by steepest descent from the

barrier, or saddle-point, which is the stationary point where the

Hessian matrix has a single negative eigenvalue. MEPs provide

a useful description if the free energy along the path is domi-

nated by the enthalpy; changes in the vibrational entropy along

the path to obtain the free energy can be included a
posteriori.540 For processes involving important changes in con-

formational entropy, the MEP can provide a curvilinear reaction

coordinate along which the PMF can be computed.48 A chain-

based method (i.e., one that optimizes the entire path simultane-

ously) was originally developed by Elber and Karplus541; a

refinement of the method is referred to as the ‘‘self-penalty walk

method’’542 and the Replica Path method in CHARMM is based

upon it and the REPLICA code. Several other chain-based MEP

methods have been developed subsequently—e.g., the Nudged

Elastic Band (NEB) method543,544 and the Zero-Temperature

String (ZTS) method.544–546 All of these methods find a locally

optimized path, which is not necessarily the global optimum

path; this is a general problem with optimization methods for

complex systems. Existing MEP calculation methods include

automatic search methods for improving pathway exploration

and the location of the globally best path.547

Under physiological conditions, molecules can cross low-

energy barriers, and more than one transition path can contribute

significantly to the transition rate.166 Hence, a related problem is

finding an ensemble of paths or the best average (minimum free
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energy) path at non-zero temperatures. One approach makes use

of nonequilibrium methods available in CHARMM. It requires

that stable states of the reaction are known from experiment,

and that suitable order parameters that characterize these states

and the distance of a conformation from them can be defined. In

such cases, insights into the reaction path can be gained from

multiple trajectories generated with targeted or steered MD

approaches.142,548–553 The various methods differ with regard to

the form of the bias, which can be either a holonomic constraint

or a restraining term added to the energy function, and the

schedule with which it is advanced. As a rule, methods that

advance the bias more slowly and apply smaller biasing forces

are less likely to give rise to dynamic artifacts.401 Self-guided

stochastic methods416,554 can be useful for exploring the avail-

able free energy basins and the paths connecting them in cases

where the final state is not known.

The PMF along some chosen reaction coordinate plays a cen-

tral role in modern transition state theory and its generalization

to many-body systems.555 It can be used to evaluate a transition

rate, the dynamical prefactor, and the transmission coefficient.

Special biased sampling techniques can be used to calculate

these quantities from an MD trajectory. In particular, the PMF

can be calculated using the free energy perturbation technique438

(see Section VI.A.), the umbrella sampling technique (see Sec-

tion VII.C.),556 or the Jarzynski equality.440

The transmission coefficient can be calculated using the acti-

vated dynamics procedure555,557; an early example of its applica-

tion to a biologically interesting system is given in Northrup

et al.296 Alternatively, it is possible to estimate the transmission

coefficient in the diffusive limit using an analysis based on the

Generalized Langevin Equation.558–560 More generally, transition

path sampling (TPS) methods395,561–563,401 sample the dynamics of

a system without bias but require harvesting many trajectories of

lengths comparable to the time it takes for the system to relax

from the transition state to a stable state (the ‘‘commitment time’’).

The fundamental importance of determining chemical and

physical reaction mechanisms has naturally led to the introduc-

tion of many methods for finding reaction paths, as is made

clear by the discussion in this section. In general, there is a

tradeoff between the computational resources required by meth-

ods and the accuracy of the description that they provide. Thus

the choice of method depends on the system of interest and the

goals of the investigator. In all of the reaction path methods,

care must be taken in the labeling of chemically equivalent

atoms (e.g. the two d position atoms or the two e position atoms

in a benzyl ring) in all of the copies, so as to avoid introducing

artifactual dihedral angle rotations into the path.564 This problem

often arises when the starting or end structures in a calculation

are derived from separate sets of X-ray crystallography data. A

facility which relabels chemically equivalent atoms in two struc-

tures according to RMSD criteria has recently been developed

and will be available in future versions of CHARMM.

VII.A. Chain-Based Path Optimization

The search for a reaction path and the corresponding transition-

state(s) is not straightforward if more than a few degrees of free-

dom are involved. Methods that drive the system along a 1D

reaction coordinate (e.g., a torsion angle or the RMS deviation

from the product), such as adiabatic minimization with a

restraint or targeted MD (see Section VII.D. later), are straight-

forward to apply. However, finding the appropriate reaction

coordinate(s) to describe the transition can be difficult, even in

apparently simple reactions. For example, in the cis–trans isom-

erization of the proline peptide bond, the standard backbone tor-

sion angle x was shown to be inappropriate as a reaction coordi-

nate.565 An alternative to using a predefined reaction coordinate

is to obtain the MEP by optimizing the entire path as described

by a chain of conformers. This approach requires an initial guess

for the path, which can be as simple as the linear interpolation

between the end-states. It is also possible to include in the initial

guess a set of predetermined intermediate structures, which are

then optimized with the rest of the path. The following three

methods in CHARMM use the chain-based path optimization

approach.

Replica Path Methods

In the original chain-based optimization method of Elber and

Karplus,541 an initial guess for the path can be provided by a

linear interpolation between end states, such that the coordinates

of the jth point, Rj, along the path are given by Rj 5 R0 1 jDR,
where DR 5 (R0 2 RM11)/(M 1 1), R0, and RM11 are the coor-

dinates of the fixed endpoints, and M is the number of free path

points. A first-order minimization method, the Powell algorithm,

is then used to minimize a functional of the form

TðR0;RMþ1ÞL ¼ 1

L

XM

j¼1

VðRjÞDlj þ k
XM

j¼0

ðDlj� Dlh irmsÞ
2

þ k0
XM

j¼0

Dt2j ; ð17Þ

where V(Rj) is the potential energy of the system at path point j,
L is the length of the entire path, Dlj is the length of path seg-

ment j (distance between path points j and j 1 1), hDlirms is the

RMS path segment length, Dtj
2 is a measure of the rotation and

translation of the coordinates of path point j relative to its coor-

dinates at the start of the calculation, and k and k0 are parameters.

Hence, the potential energy of the entire path is minimized while

the path segment lengths (second term) and the global rotation

and translation of each path point (third term) are restrained. In

the self-penalty walk method,542,566 rigid rotation/translation is

constrained by a different method and an additional restraint

term is added that is of the form q
P

Mþ1
i>jþ1 exp(2r2i;j/(k@hrirms)

2),

where rij is the distance between two path points, hrirms is the

RMS distance between sequential points, and q and k@ are

parameters. This ‘‘repulsion’’ term prevents the path from revis-

iting the same regions of conformational space. Many current

reaction path methods are derivatives of this ‘‘self-avoiding’’ or

self-penalty walk method. Methods of this type eliminate the

expensive analytic Hessian computation required for the Intrinsic

Reaction Coordinate (IRC) method,567 which is generally used

in QM studies of small molecules. Since the self-penalty walk

methods use a differentiable target function, they are well suited
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for searching and improving paths using high-temperature

annealing or self-guided Langevin dynamics554,568 for the explo-

ration of the conformational space.

The replica path method289,569 is similar in spirit to the self-

penalty walk method, but it utilizes the REPLICA functionality

in CHARMM (Section VI.C.) to construct a trial reaction path

by replicating the part of the molecule that is involved in the

conformational change. This feature allows a partitioning of the

system into replicated atoms that are directly involved in the

pathway and environment atoms whose positions are the same

for all replicas. The method restrains each replica with a penalty

function that uses best-fit RMS distances to the two adjacent

replicas, thereby circumventing the need for restraining the rota-

tion and translation of the replicas. A restraint on the pathway

curvature using the RMSBFD metric is included, in lieu of a

temperature-related term used in some other chain-of-states

methods, to smooth the pathway and keep it from folding back

on itself. For each path point (replica), i, this restraint term

involves the angle, ai, between i, i 1 1, and i 1 2; the term is

of the form Eang 5
P

m
i¼1 Kang(Cmax 2 cos(hi))

2/2, where hi 5

180 2 ai, Cmax is the cosine of the angular deviation from line-

arity above which the restraint is applied, Kang is the force con-

stant determining the stiffness of the path and m is the number

of path points. Customized specification of atomic weighting

factors can be also used in the RMSBFD calculation to vary the

degree of participation of a given atom in the conformational

change metric. Atoms selected with zero weight contribute to

the energy in the path calculation, but their displacement is not

included as part of the path and they are not used in the applica-

tion of the restraints.

The replica path method in CHARMM can be used with both

classical and hybrid QM/MM Hamiltonians. Several QM pack-

ages may be used in a parallel scheme (i.e., parallel QM/parallel

MM) that can efficiently use hundreds of processors: GAMESS-

UK,266,285,570 GAMESS-US,286,287 and Q-Chem.294,295 Parallel

efficiency is achieved by computing the quantum energy of each

replica in parallel on a different set of processors.289,569 For

single-processor calculations, the SCC-DFTB package can also

be used.571 The QM/MM replica path method is an effective

tool for obtaining approximate minimum energy reference path-

ways. These are obtained either by minimization, or by calculat-

ing an average structure for each replica from a Langevin dy-

namics simulation and then optionally smoothing. The smoothed

path is useful for subsequent PMF simulations by umbrella

sampling.

A potential problem that can arise with the use of MEP

methods for the study of large systems is that there can be

‘‘uncorrelated’’ fluctuations in the total energies due to system

motions that are unrelated to the pathway of interest (e.g., the

rotation of a water molecule that changes the total energy by

several kcal/mol). The replica path method, as well the REP-

LICA-based NEB method described next, mitigate this problem

by treating the environment consistently over the course of the

entire path, allowing all replicas to see the same environment.

However, the total energy over an optimized zero-temperature

path generated with these methods may still be subject to uncor-

related fluctuations when the replicated portion, itself, is large.

In these cases, the calculation of the approximate work done

over the 0K path can yield meaningful results. The forces from

the entire replicated region and environment are included in the

work term, but because only their projections along the path

contribute, the effect of uncorrelated motions in the distant parts

of the replicated regions is diminished. The ‘‘0K work’’ term has

been shown to converge to the system energies in the chorismate

mutase reaction path for a small replicated region (6 Å in ra-

dius),289,569 For cases in which the replicated region is larger

and in which the 0K work term and the system energies do not

agree, the former is the more meaningful and reproducible quan-

tity. The off-path simulation method (Woodcock H. L., et al.; in

preparation) extends this idea to the computation of PMFs by

utilizing a fixed reference pathway and RMSBFD restraints to

define an umbrella potential and allow free motion in planes or-

thogonal to the pathway. These planes can be thought of as hav-

ing an approximately constant value for the commitment proba-

bility. The force vectors resulting from a simulation using these

restraints, along with the corresponding distance vectors, are

rotated into the frame of the reference pathway for each segment

of the path, yielding an average work term, which may be

partially curvature corrected.

NEB Methods

The NEB method543 is another chain-of-states method that is

implemented in two different forms as part of the replica path

code in CHARMM. The NEB method determines MEPs that are

locally exact, given the approximation of using a finite (usually

small) set of replicas. The forces acting on each replica are

given by

~Fi ¼ �rVð~RiÞj? þ ð~FS
i � ŝjjÞŝjj (18)

where V(Ri) is the potential acting on the ith replica, ŝjj is the

pathway tangent vector, rVð~RiÞj? ¼ rVð~RiÞ � ðrVð~RiÞ � ŝjjÞŝjj
is the projection of the perpendicular component of DV(Ri) and

ð~FS
i � ŝjjÞŝjj is the parallel component of the spring force intro-

duced to keep the replicas equally spaced along the chain. The

two forms of the method implemented in CHARMM differ in

the definitions of the spring force and the tangent vector. In

addition, one uses RMS distances to calculate pathway step

lengths and angles,572 and the other uses root-mean-square best-

fit distance (RMSBFD) values.297

In CHARMM, a minimization scheme with superlinear con-

vergence properties has been developed and implemented for the

NEB method.297 The algorithm is based on the adopted basis

Newton–Raphson (ABNR) method. During the minimization,

each ABNR step is performed self-consistently in a user-defined

subspace. The superlinear minimization scheme of NEB has

been shown to be more efficient than quenched MD minimiza-

tion or steepest descent minimization.297 In addition, the

CHARMM implementation of the NEB method is also able to

take advantage of the RMSBFD pathway definitions (see Section

VII.A.) and to employ flexible weighting options. Also, because

the NEB implementation is coupled to the REPLICA code, the

parallel/parallel QM/MM pathway functionality in CHARMM

can be used to examine bond-forming and bond-breaking proc-

esses. In addition to the standard NEB method, CHARMM also
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supports the climbing image NEB (CI-NEB).573 In this method,

which is a modification of the original NEB, one of the images

is moved to the highest energy saddle point along the path. The

CI-NEB is robust with respect to the discretization of the path-

way and returns an accurate estimate of the transition state

energy. Use of the CI-NEB method following a standard replica

path or NEB pathway calculation can save significant computer

time when the focus is on transition state properties.

Another chain-of-states method is the recently developed

string method544–546 and its implementation using swarms-of-

trajectories.574 It is similar in spirit to the NEB method, but the

replicas are independent during dynamics and minimization (no

interreplica restraints), and they are repositioned along the inter-

polated path after every global iteration. Thus, the string method

is, in principle, somewhat simpler to implement and parallelize

than NEB. Moreover, the finite temperature string method,

unlike NEB, permits the calculation of free energy surfaces.

Application has been made to the solvated alanine dipeptide.575

Conjugate Peak Refinement (CPR) Method

Another algorithm for finding the MEP is CPR,576 which is

implemented in the TREK module (keyword TRAVEL) of

CHARMM. Starting from an initial path, CPR finds a series of

structures that closely follow the valleys of the energy surface

and determines all saddle points along the path. Unlike the rep-

lica path and NEB methods, the CPR algorithm does not utilize

the REPLICA functionality in CHARMM. Instead, the method

replicates the system internally, and environment atoms can be

fixed to reduce the degrees of freedom in the problem. CPR is

capable of determining the relevant saddle-point(s) along transi-

tion pathways that involve tens of thousands of degrees of free-

dom. The principle of CPR is to focus the computational work

on improving the high-energy segments of the path. An iterative

procedure is used, and in each cycle the highest local energy

maximum along the path (called the ‘‘peak’’) is found and the

path is rebuilt so that the new path circumvents the high-energy

region around the peak. This is done by improving, removing or

inserting one path-point. Points that are inserted or improved are

optimized by a controlled conjugate gradient minimization,

which prevents each point from falling into an adjacent mini-

mum and which converges to the saddle-point if the peak was

located in a saddle region of the energy surface (i.e., the path

was crossing over a barrier). The path refinement is finished

when the only remaining energy-peaks along the path are true

saddle-points. Because the number of path-points is allowed to

vary during the refinement, and no constraints are applied on the

path shape, any degree of complexity of the underlying energy

surface can be accommodated. The details of this heuristic algo-

rithm are described in Fischer and Karplus576 and in the

CHARMM documentation. Since the parameters of the algo-

rithm are independent of molecular size or the nature of the

reaction, they do not need to be reoptimized for new reactions.

Thorough minimization of the structures is required. Also, to be

compatible with CPR, a potential energy function must have

analytic and finite-difference derivatives which correspond (i.e.,

must pass TEST FIRSt; see Section XI.B.). CPR is parallelized

and works in combination with QM/MM implementations and

with most GB-related continuum solvation methods. For the pur-

pose of energetic analysis or subsequent PMF calculations along

the MEP,48 the resulting CPR path can be effectively smoothed

with the NEB method (see earlier) or with the Synchronous

Chain Minimization (SCM) method. In SCM, all path points are

simultaneously energy-minimized under the constraint that each

point must remain on the hyper-plane that bisects its two adja-

cent path-segments; these planes are periodically updated as the

path evolves. To prevent kinks in the path and the descent of

path-points into nearby minima, SCM controls the change in the

angle between adjacent path segments during the minimizations.

SCM is implemented in the TREK module of CHARMM.

Problems to which the CPR algorithm has been applied

include: (1) enzymatic catalysis, where the end-states of the sub-

strate can be either conformational isomers (e.g., the rotamase

FKBP577) or chemically different species (e.g., proton transfer in

Triosephosphate-isomerase254); (2) the study of membrane chan-

nel permeation, where the substrate in the two end-states can be

placed on either side of the membrane (e.g., sugar-chain translo-

cation across maltoporin578); (3) ligand entry paths into buried

binding sites, which can be explored by using reactant states

where the ligand is placed in various locations on the protein

surface (e.g., retinoic acid escape36); and (4) pathways for large-

scale conformational change between different crystal structures

of proteins.579 The robustness of the CPR method allows it to be

used in automatically mapping the connectivity of complex

energy surfaces and, with graph-theoretical best-path searching

algorithms, in identifying the globally lowest path in a dense

network of subtransitions.547 CHARMM scripts enabling this

functionality can be found in the ‘‘support’’ directory.

VII.B. Nonequilibrium Trajectory Methods

Several methods for determining a reaction path between a prod-

uct and a reactant follow the nonequilibrium trajectory of the sys-

tem starting in the reactant basin while a biasing potential is

applied to drive the system towards the product basin. In most

cases, the trajectories generated according to such a scenario are

irreversible; i.e., the system does not necessarily return to the ini-

tial state if the biasing potential is turned off because barriers

along the pathway are usually present in both directions. The

resulting trajectories are generally found to provide useful insights

concerning the character of the transition pathway. Moreover,

once a pathway has been calculated, it is possible to determine

the free energy associated with it by umbrella sampling or alterna-

tive methods.48 Also, in some cases the underlying equilibrium

PMF can be calculated via the nonequilibrium approach due to

Jarzynski,440 though accurate estimates are difficult to achieve.580

A number of such nonequilibrium methods are supported in

CHARMM. They are targeted molecular dynamics (TMD),548

self-guided Langevin dynamics (SGLD),554,568 steered molecular

dynamics (SMD),401,549–551 and the half–quadratic biased MD

(HQBMD) method.142 In addition to these specialized nonequili-

brium methods, CHARMM provides a number of general poten-

tial energy restraints (described in Section III.F.), along with a

dedicated restraint facility called RXNCOR, that can be used to

control the progress of a trajectory.
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Targeted Molecular Dynamics

In 1993, a constrained dynamics method called TMD was devel-

oped to simulate the pathways of conformational transitions of

biomolecular structures that occur on time scales much longer

than are accessible in conventional MD simulations.548 If the

atomic structures of two conformations of a protein are known,

this method can be used to identify a transition pathway from a

starting conformer to the target conformer by applying a single

time-dependent holonomic constraint based on the (mass-

weighted) RMSD between the two conformers. The general

form of the constraint is

Uð~X; tÞ ¼
XN

i¼1

mij~xiðtÞ �~xi;Fj2=
XN

i¼1

mi

 !
� g2ðtÞ ¼ 0 (19)

where N is the number of atoms in the system, ~xi;F is the posi-

tion of atom i in the target conformer, ~xiðtÞ is the position of

atom i at time t, g(t) is the desired mass-weighted RMSD

between the system and the target structure at time t, mi is the

mass of atom i, and ~X ¼ f~x1;~x2; . . . ;~xNg. At each step of the

MD simulation, the system is first allowed to evolve according

the physical (unperturbed) potential energy function. The con-

straint forces, ~Fc
i ¼ @U=@~xi, then perturb the structure so as to

satisfy eq. (19); for each atom, the force is proportional to the

difference between the atom’s coordinates in the current and tar-

get structures—i.e., ~Fc
i ðtÞ / ð~xiðtÞ �~xi;FÞ. Application of the

constraint (with the mass weightings) conserves the position of

the center of mass of the system, provided that the centers of

mass of the current and target conformers are the same and all

of the atoms are included in the constraint. Although the method

imposes no a priori restrictions on the time-dependence of the

constraint parameter g(t), which controls the rate of convergence

of the initial conformer to the target, the parameter is commonly

made to decrease linearly with time (but see RP-TMD below),

until it reaches a user-defined tolerance. As an alternative to this

type of holonomic constraint, a harmonic restraint can be used

in TMD.552

In CHARMM, the TMD constraint can be based on all atoms

or a chosen subset of atoms (second atom selection in the TMD
command); the remaining degrees of freedom in the system are

allowed to relax according to the physical potential energy sur-

face throughout the simulation. If the atom selection (typically,

the protein mainchain atoms) does not include all the atoms in

the system, application of the constraint does not in general pre-

serve the center-of-mass of the system. As the holonomic con-

straint employed in TMD does not conserve angular momentum,

the target structure can be superimposed onto the simulated

structure by a least-squares fit at a user-specified frequency (by

use of the INRT option and the first atom selection in the TMD
command) so as to remove overall rotation. The TMD constraint

can be used in conjunction with other CHARMM constraints

such as SHAKE, which fixes bond lengths. As with other meth-

ods that introduce external forces, the use of Langevin dynamics

is recommended with this method to control the temperature so

as to obtain smooth trajectories. TMD permits simulations to be

performed at any desired temperature; this is an advantage in

the study of biomolecules and other systems with significant

entropic contributions, since pathways generated at ambient tem-

perature are often more realistic than the minimum-energy path-

way. The TMD method in CHARMM has been widely used. An

example is the determination of the reaction paths for the transi-

tion between the GTP-bound and GDP-bound conformations of

the molecular switch I and II regions of oncogene protein

p21ras,581 which recognize distinct sets of partner proteins on the

cell signal transduction pathway.582 An interaction that occurs

along the pathway and not in the end states was identified by

the simulations and subsequently verified by experiment.583,584

The TMD method, which is particularly suited to model large-

scale motions, has also been used to determine the transition

pathways for the rigid-body-like domain motions of

GroEL585,586 and F1-ATP synthase.124

Two variants of the TMD method are implemented in

CHARMM, f-TMD, and RP-TMD. In the f-TMD method, the

constraint is a function of both the initial and final structures,

rather than just the latter. The form of the constraint is: f(t) 2

f0(t) � ftol, where

fðtÞ ¼ �1

1þ e�CfR1ðtÞ
þ 1

1þ e�CfR2ðtÞ
; (20)

ftol is a tolerance, f0(t) is the desired value of the restraint at

time t, Cf is a constant, and R1(t) and R2(t) are the RMS devi-

ations from the two target structures. This form of the TMD

method is especially useful when the current structure is dis-

tant from either target or when the desired path does not

involve a monotonic decrease in the RMSD from one target.

The second variant is the restricted perturbation TMD method

(RP-TMD),553 which limits either the sum of the atomic per-

turbations or the maximal atomic perturbation at each step of

the dynamics trajectory. It is designed to prevent large barrier

crossings, so that the resulting paths can be closer to the

actual PMF path than those obtained in the other TMD formu-

lations.

A useful approach for simulations of biomolecules is to start

with TMD or related methods with a large constraint that pro-

vides a path between the end states, and to gradually reduce the

constraint so that the resulting paths approach the true path in

the absence of constraint.401

The Half Quadratic Biased Molecular Dynamics
(HQBMD) Method

HQBMD is a method that forces a macromolecule to move

between states characterized by the value of a reaction coordi-

nate, which changes with time along the trajectory. The

method is related to the minimum biasing technique intro-

duced by Harvey and Gabb587 and has been applied to simu-

late stretch-induced protein unfolding,142,170 the denaturation

of a protein in vacuo588 and in implicit solvent,589 and the

unbinding process for a hapten-antibody complex.167 The per-

turbation is a half-quadratic potential that depends on time

through a reaction coordinate q, which is a function of all or

a subset of the Cartesian coordinates of the system. The per-

turbation has the form
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Wðr; tÞ ¼
aðqðtÞ � qaðtÞÞ2

2
; qðtÞ < qaðtÞ

0; qðtÞ � qaðtÞ

8<
: (21)

where qa(t) 5 max0�s�t q(s).
The minimum of the half quadratic perturbation ‘‘moves’’ as

the reaction proceeds (i.e., as the reaction coordinate q
increases). The reaction coordinate q is chosen in accord with

the problem being studied. One such coordinate currently imple-

mented in CHARMM is

qðtÞ ¼ 1

NðN � 1Þ
XN

i¼1

XN

j>i

ðrijðtÞ � rF
ij Þ

2: (22)

This coordinate corresponds to the mean-square distance devia-

tion from a reference conformation (F) of a set of N atoms that

is considered sufficient to specify the conformation of the object

system being studied; rij(t) is the instantaneous distance between

sites i and j, and rF
ij is the distance between the same pair of

sites in the reference structure (F).
If the coordinates of the reference conformation are all set to

zero, q(t) in eq. (22) (i.e., the average squared interparticle dis-

tance) is proportional to both the radius of gyration (Rg) squared

and the variance of the position vectors.{318 Several other reac-

tion coordinates can be chosen within the HQBMD module.

Among these are reaction coordinates which measure the devia-

tion from experimentally measured ‘‘phi’’ values, a name intro-

duced for the effects of mutations on the stability of protein

folding transition states,590–592 and hydrogen exchange protec-

tion factors.591,592 Both are assumed to be related to the number

of native contacts or hydrogen bonds, or the deviation from

measured NOEs and scalar dipolar couplings. Such biases have

been used to sample slow native fluctuations and non-native

states which are difficult to characterize by other means.

In an HQBMD calculation, the simulation is started at t 5 0

with the value of qa(0) set equal to q(0), the value of the reac-

tion coordinate for the equilibrated starting configuration. If the

reaction coordinate spontaneously increases in the simulation

step from t to t 1 Dt, i.e., q(t 1 Dt)[ qa(t), the external pertur-

bation is zero and has no effect on the dynamics. In such a case,

qa(t) is updated and W(r,t) is modified accordingly, i.e., qa(t) is
set equal to q(t 1 Dt). If q(t) is smaller than qa, the harmonic

force acts on the system to prevent the reaction coordinate from

decreasing significantly. The value of a determines the magni-

tude of the allowed backward fluctuation of the reaction coordi-

nate and modulates the time scale of the reaction. The macro-

scopic state of the system is never changed since the perturba-

tion is added to the Hamiltonian of the unperturbed system

when it is numerically zero. Nevertheless, the perturbation

affects the system working like a ‘‘ratchet and pawl’’ device593

that ‘‘selects’’ the sign of the spontaneous fluctuations biasing

the trajectories toward the desired state. If the effective free

energy surface is such that the motion of the reaction coordinate

is diffusive in the absence of a barrier, the temperature of the

system is not expected to change during the conformational tran-

sition. However, if there is a free energy barrier along the reac-

tion path, the effect of the directed motion induced by the per-

turbation is to transform some of the kinetic energy associated

with the reaction coordinate into potential energy. To avoid pos-

sible artifacts from temperature variation of this type, the simu-

lations should be performed in the presence of a thermal bath

using, e.g., Nosé–Hoover, or Langevin dynamics. The HQBMD

method allows one to sample regions of the configurational

space that are separated by either thermodynamic or kinetic (on

a simulation time scale) barriers and determine low energy path-

ways. Other techniques, such as umbrella sampling, can be used

to estimate the free energy profile along these pathways. For

comparative purposes all the reaction coordinates available in

the HQBMD module can also be manipulated by means of a

harmonic potential whose minimum is displaced at constant

velocity, in accord with a number of AFM experiments; this

method is referred to as SMD.142,549,551,594

The AFM Method

The implementation of the AFM method in CHARMM has been

motivated by single-molecule experimental techniques, which

offer a new perspective on molecular properties.595,596 Such

experimental techniques can be simulated in CHARMM by, for

example, using AFM SMD to mimic the effect of a cantilever

moving at constant speed, or by applying the biased MD

approach described earlier (AFM BMD) or a constant force (CF)

to mimic a force-clamp experiment. Alternatively, a force (con-

stant or periodically varying in time) can be applied to selected

atoms in a specified direction (PULL command). The PULL

force vector can be specified directly; alternatively, it can be

specified indirectly in terms of an electric field, E, which gives

a force, qE, acting on an atom with charge q.

Self-Guided Stochastic Methods

To enhance searching efficiency and facilitate the study of

conformational changes in which the final state is not known,

two self-guided stochastic simulation methods are available

in CHARMM: momentum-enhanced hybrid Monte Carlo

(MEHMC)416 and self-guided Langevin dynamics (SGLD).554

These approaches address several problems416,597 inherent in the

earlier self-guided molecular dynamics (SGMD) algorithm that

motivated them.568 They are much more robust than SGMD

because they balance the use of information about the average

motion from previous steps in the simulation with appropriate

forms of dissipation.416 As a result, MEHMC and SGLD can

enhance the conformational search efficiency by accelerating the

motion of the system without significantly altering the ensemble

of conformations explored. Two parameters are used to control

an MEHMC or SGLD simulation. One is the local averaging

time, which defines the slow motions that are to be enhanced.

The other is the guiding factor, which controls the degree of

enhancement. The application of these methods in peptide fold-

ing simulations598 and in the exact calculation of thermo-

{Specifically, 1
N2

PN
i¼1

PN
j>i rij

2 ¼ 1
N

PN
i¼1 ~xi � ~xh ið Þ2¼ Rg

2 ¼ ~x2
� �

� ~xh i2¼
Varð~xÞ, where ~xi is the position vector of atom i, ~xh i is the mean position

vector (center of geometry), and ~x 2
� �

is the mean squared position vector.

The double sum over squared interparticle distances is therefore expressible

exactly as functionals of single sums.
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dynamic416 and kinetic599 observables has shown promising

enhancements in conformational search efficiency.

VII.C. Potentials of Mean Force and Umbrella Sampling

MD simulations produce a series of states whose equilibrium and

kinetic properties can be estimated. However, sampling the con-

formational changes involved in very slow processes by brute

force simulations may be impractical. One way to improve sam-

pling is by the introduction of systematic biases along one or

more appropriately chosen reaction coordinates that describe the

progress of the conformational change.556 Several of the general

restraints in CHARMM (see Section III.F.) can be used to intro-

duce such a bias, but CHARMM also provides the dedicated reac-

tion coordinate facility RXNCOR and the adaptive umbrella sam-

pling module (ADUMB) to support biased simulations. The

RXNCOR module600 applies biasing energy restraints along a

chosen reaction coordinate. A general framework is provided to

define the reaction coordinates as a function of appropriately cho-

sen degrees of freedom of the molecular system. To analyze the

biased simulations, the PMF of the reaction coordinate and the

value of the reaction coordinate versus time can be printed out.408

The adaptive umbrella (ADUMB) sampling module408 permits

one to define umbrella sampling coordinates, and to carry out a

series of biased simulations, in which the biases are adapted to

obtain uniform sampling of the chosen coordinates. Ensemble

averages are obtained as a weighted average of properties of the

conformations from the biased simulations. The adaptive umbrella

sampling module implements the Weighted Histogram Analysis

Method480,482,483,485,489 (see Section VI.A.) to determine weight-

ing factors required to calculate the estimates for the unbiased

system. The ADUMB module of CHARMM supports multidi-

mensional adaptive umbrella sampling,408 and multicanonical

simulations.405,601 The former is used to obtain uniform sampling

of the space spanned by the chosen coordinates if several coordi-

nates are of interest. The latter uses the potential energy of the

system as one of the umbrella sampling coordinates, with the

result that high and low energy conformers are sampled with com-

parable probability. These biasing methods have been shown to

be efficient.488 Since the effect of biases on the convergence of

free energy values depends on the system and the property of in-

terest, selection of the best biases to speed convergence has to be

done on a case-by-case basis. Several biasing potentials have

been combined with umbrella sampling to determine the free

energy surfaces associated with conformational changes in biomo-

lecules. For example, biasing potentials applied to proteins and

peptides have been based on the radius of gyration,298 native con-

tact fraction (the fraction of contacts relative to the native protein

structure),299,602 RMS deviation relative to reference conforma-

tions,603,604 the center-of-charge along a proton wire,560 the posi-

tion of ions along the axis of membrane channels,33,91 and the

pseudo-dihedral angles controlling DNA base-flipping.81 An

adaptive umbrella sampling approach has also been implemented

for studying multidimensional reaction surfaces with combined

QM/MM potentials.605,606 In addition, a cubic spline interpolation

procedure has been implemented for calculating an analytical bias

potential, given the discrete PMF values at a series of points

along a given reaction coordinate.607 This procedure is particu-

larly useful for studying chemical reactions where the approxi-

mate barrier height and shape of the PMF are known. It has been

applied to a number of enzymatic reactions with the RXNCOR

module.258,259 These restraint functions are implemented in

CHARMM and have been integrated with many of the tools for

the analysis of conformational energetics and populations. Their

application to protein and peptide folding300,608 and to enzyme

catalysis258,259 has been reviewed.

Conformational Free-Energy Thermodynamic Integration (CFTI)

The CFTI approach is an extension of the well-known TI

method developed for free energy simulations.609 It is aimed at

exploring multidimensional free energy surfaces.610 The free

energy gradient with respect to a selected set of conformational

coordinates is calculated from a single simulation in which the

coordinates are subjected to holonomic constraints.610–612 This

method is closely related to the ‘‘Blue Moon’’ calculation of the

free energy along a reaction coordinate,613 and has recently been

analyzed and generalized to unconstrained simulations.614

The free energy derivatives are determined by averaging the

forces acting on the constrained coordinates over an MD simula-

tion. The generation of MD trajectories with fixed values of

selected coordinates is performed using the holonomic constraint

approach, which is part of the TSM method of Tobias and

Brooks.357,615 The basic TI formula for the derivative of the free

energy G with respect to a conformational coordinate n is616

@G

@n
¼ @U

@n

	 

n

þkBT
@ ln J

@n

	 

n

(23)

where U is the system potential energy, the angled brackets

denote an average over a set of structures with n fixed, and J is

the Jacobian of the transformation from Cartesian coordinates to

a complete set of generalized coordinates, n (i.e., such that all

conformations of the system may be represented by n). A gener-

alization of the TI formula to several dimensions has also been

developed.610

Multidimensional free energy gradients are calculated from

the forces acting on chosen atoms and are evaluated at essen-

tially no extra cost compared to a standard MD simulation. The

method uses only local information about the free energy sur-

face, which may be sampled more densely in regions of interest

and less densely elsewhere. All the ‘‘soft’’ degrees of freedom in

the system, e.g., all flexible dihedrals in a peptide, can be con-

strained to obtain both a complete free energy gradient surface

and fast convergence of thermodynamic averages.612,617

The free energy gradient makes possible different approaches

to exploring the molecular free energy surface. A series of cal-

culations for a range of coordinate values allows for the calcula-

tion of free energy gradient maps, which can be integrated to

yield free energy surfaces or free energy profiles linking confor-

mations of interest.612,617 The free energy gradient can also be

used to perform an optimization of the free energy surface to

locate free energy minima corresponding to stable structures.611

Free energy profiles connecting the stable states may then be

generated, and the free energy gradient integrated along them to

yield conformational free energies and transition state barriers
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on the molecular free energy surface. Numerical second deriva-

tives of the free energy with respect to the coordinates of inter-

est can be calculated, providing a measure of stiffness or stabil-

ity.611 The CFTI method has been applied to the exploration of

free energy surfaces of several peptide and peptidomimetic sys-

tems: various helix types,612 b-sheets and collagen triple-heli-

ces,612 model b-peptides,617 and the opioid peptide DPDPE in

solution.618

VII.D. Transition Path Sampling

The TPS algorithm of Chandler and coworkers561,562 uses Monte

Carlo methods to sample the space of whole dynamic trajecto-

ries. Such simulations not only permit determination of the

mechanisms of rare events but also the calculation of their rates.

In other words, time-dependent phenomena can be investigated

using importance sampling tools whose use has been tradition-

ally limited to equilibrium properties.

The implementation of TPS in CHARMM563 can be activated

through options for the reaction coordinate definition (RXNCor)
and MD (DYNAmics) commands. Two types of Monte Carlo

moves are provided. In ‘‘shooting’’ moves,561,562,619,620 a phase

space point from an existing trajectory is selected, a perturbation

is made (typically to the velocities in a deterministic system and

to the random force in a stochastic one), and part or all of the

trajectory is regenerated by integrating from the perturbed point

to one or both endpoints. ‘‘Shifting’’ moves correspond to repta-

tion in path space and involve extending the trajectory at one

end by integration and shortening the trajectory at the other end.

In both cases, new trajectories are accepted if and only if they

satisfy the constraints that define the path ensemble of interest.

Most often, these constraints are such that the endpoints of tra-

jectories must have order parameter values corresponding to the

reactant and product basins of an activated process, in which

case the computational advantage over straightforward MD

derives from the fact that TPS eliminates the waiting time for

spontaneous fluctuations to the transition state region. Because

trial paths are generated from existing ones, the method can be

difficult to initiate in complex systems. To address this issue, a

method for annealing biased paths to unbiased ones was devel-

oped recently and implemented in CHARMM.401

The interpretation of TPS (and more generally, MD) simula-

tions to delineate a mechanism requires identifying molecular

features specific to the transition state ensemble (defined here to

be configurations with equal likelihoods of committing to reac-

tant and product basins in additional simulations initiated with

randomized momenta).409,621 Because trial-and-error approaches

to this task can require prohibitively large investments of human

and computer time, Ma and Dinner621 adapted automatic means

for obtaining quantitative structure-activity relationships

(QSARs) to commitment probability (pB) prediction. The genetic

neural network (GNN) QSAR method of So and Karplus622,623

was used to determine the functional dependence of pB on sets

of up to four coordinates from a database of candidates, and to

select the combination that gave the best fit. Application of this

method enabled the identification of a collective solvent coordi-

nate for the C7eq ? aR isomerization in the alanine dipeptide.621

The TPS,562 bias annealing,401 and GNN621 methods were

recently combined to elucidate a mechanism for DNA damage

recognition by the DNA repair protein O6-alkylguanine DNA-

alkyltransferase (AGT).624

VII.E. Coarse-Grained Elastic Models

Coarse-grained modeling approaches, which are based on

reduced descriptions of molecules, are being increasingly uti-

lized in studies of large systems, such as macromolecules and

complexes. They can provide useful information at a fraction of

the cost of the corresponding atomistic calculations (see also

Section IX.D.). One type of coarse-grained model, the simplified

elastic model, represents the protein by its Ca atoms and the

potential energy by harmonic energy terms corresponding to

springs between these atoms. Both ‘‘single-basin’’ and ‘‘multi-

basin’’ models have been developed. In the single-basin models,

fluctuations of the system in the neighborhood of a single stable

state, usually an unperturbed crystal structure, are of interest.

The first such model to be introduced is the so-called Elastic

Network Model (ENM).380 More elaborate treatments are the

Gaussian Network Model (GNM),625 the Anisotropic Network

Model (ANM),381 and the recently introduced Generalized ANM

(GANM),626 which combines elements of the other models.

Since the potential is harmonic, a normal mode analysis yields

exact equilibrium properties, and the models have been used, for

example, to give estimates for relative B factors that appear to

be in reasonable agreement with experiment.627 As a component

of the vibrational analysis module VIBRAN in CHARMM, both

the GNM and ANM calculations can be invoked with the

GANM option, for which a selection is available to specify the

atoms that are included in the coarse-grained network. An exter-

nal file unit is provided for reading in other network parameters.

On the basis of an ENM potential in the presence of external

force perturbations, a linear response-type approach involving

nonequilibrium simulations has been used to predict large con-

formational displacements in proteins.628 Another single-basin

coarse-grained method available in CHARMM is based on a

Go-like model.512 An extension of coarse-grained models repla-

ces an atomic description by force centers distributed in a uni-

form way inside an electron density envelope for the system

obtained from cryo-EM.629–631 An a-carbon-based model has

also been used to study the coupling between allosteric transi-

tions of the E. Coli chaperonin GroEL and the folding of a

model substrate protein.632 The results support those obtained

with the TMD method and an all-atom representation for GroEL

and the protein substrate.586

For systems that undergo large conformational changes, an

approximate transition pathway or pathways between stable

states can be determined through the use of a ‘‘multibasin’’

extension of the elastic network-type methods called the Plastic

Network Model (PNM),633 which incorporates ideas from va-

lence bond theory.634,635 For a two-state system, the PNM

method constructs a 2 3 2 phenomenological Hamiltonian,

where the diagonal elements are the ENM energy of each con-

former, and the off-diagonal elements are a pre-defined mixing

constant (or coupling parameter). The ground state energy of the

system is the lowest eigenenergy of the diagonalized PNM

Hamiltonian. The PNM module in CHARMM provides a simple
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yet smooth and continuous coarse-grained potential, which can

be used with the reaction path methods and nonequilibrium dy-

namics methods described in the previous parts of Section VII

for the study of transition pathways between multiple protein

conformations. The PNM method has been used with the TREK

module in CHARMM to obtain free energy pathways for the

open-to-closed conformational transition in adenylate kinase

(ADK).633 Recently, coarse-grained simulations combining PNM

and TMD (Section VII.B.) have been performed to elucidate the

torque generating mechanism of F1-ATPase during its hydrolysis

cycle.636 The PNM method can also be used as a conformation-

ally adaptive rigidification potential with an all-atom force field

in nonequilibrium all-atom simulations to prevent artifactual

structural deformations induced by the use of simulation times

that are much shorter than the actual transition times.

VII.F. Chemical Reactions and the Treatment of

Nuclear Quantum Effects

The computational techniques described earlier, including reac-

tion path optimizations, umbrella sampling and free energy sim-

ulations as well as combined QM/MM potential functions, pro-

vide the tools for modeling chemical reactions in condensed

phases and in enzymes. The study of reactions was set forth as

an important goal in the original CHARMM paper in 1983,22

and was realized a few years later in the study of an SN2 reac-

tion in aqueous solution as the first application of a QM/MM

potential in an MD free energy simulation.248 Subsequent QM/

MM studies, including detailed analyses of the energetic contri-

butions of specific residues, have provided further insights into

the roles of enzymes in lowering activation barriers.251,258,637,638

Transition state theory (TST) provides a fundamental

approach for describing the rates of reactions in the gas phase,

in solution, and in enzymes.259 The central quantity is the free

energy (PMF) along the reaction coordinate. The latter is

expressed in terms of geometrical parameters, such as a dihedral

angle in peptide bond isomerization or the difference between

the bond distances for bonds being broken and formed in a pro-

ton transfer process639 (see Figure 7). The free energy can also

be determined as a function of a collective solvent reaction coor-

dinate defined by the energy gap between the effective diabatic

potentials of the reactant and product states.640,641 The associ-

ated transmission coefficient, which determines the fraction of

the trajectories that, having reached the transition state, go on to

the product, can be calculated from multiple trajectories, starting

from the transition state ensemble generated during the PMF

simulations.555,557 This approach was first applied to the enzyme

triose phosphate isomerase,642 for which the calculated transmis-

sion coefficient was found to be 0.4, indicating that the asym-

metric stretch coordinate of the transferring proton is a good

choice. In a later study of the enzymatic reaction catalyzed by

haloalkane dehalogenase, in which the computed free energy

barrier was 11 kcal/mol lower in the enzyme than in the corre-

sponding reaction in aqueous solution, the transmission coeffi-

cient was found to be 0.53 in the enzyme, versus 0.26 in solu-

tion.643 Applications to chemical reactions in solution and in

enzymes have been reviewed.258,259,639,644 TPS (Section VII.D.)

provides a method that can be used to study the reactions for

cases where the transition state is not known. A recent study

with CHARMM of the hydride transfer reaction catalyzed by

lactate dehydrogenase found that residues aligned along the do-

nor and acceptor atoms of the hydride transfer reaction but dis-

tant from the active site are involved in the reaction.645 These

residues participate in compression and relaxation motions that

help to bring the donor and acceptor atoms together so as to

increase the tunneling probability.646

In contrast to most processes commonly studied with classi-

cal MD simulations (see Section V.B.), reactions involving the

motion of hydrogen atoms and more generally reactions at low

temperature have non-negligible quantum dynamical effects and

require the use of quantized vibrations and the inclusion of tun-

neling corrections. Quantum dynamics is essential for treating

kinetic isotope effects (KIEs) of chemical reactions, which are

of great interest because the ratio of the rates between light and

heavy isotopic reactions provides the most direct experimental

method for characterizing the transition state of a chemical reac-

tion. The CHARMMRATE module, which implements ensem-

ble-averaged variational transition state theory with multidimen-

Figure 7. Reaction mechanism of the excision of misincorporated

deoxyuridine from DNA by the uracil-DNA glycosylase UDG. (a)

Schematic diagram. Electron transfers are indicated in red, hydrogen

bonds in green and enzyme residues in blue. The dashed line to

C157 indicates a Ca��Ha���O4 hydrogen bond. (b) Adiabatic poten-

tial energy surface as a function of rC10��N1 and rC10��OH2. In the

region rC10��N1 � 2.20 Å and rC10��OH2 � 2.00 Å, the points above

32 kcal/mol are not shown for clarity. Red arrows follow the lowest

energy pathway (stepwise dissociative); green arrows follow a per-

fect associative pathway; and yellow arrows follow a concerted

pathway starting from the reactant structure. The states indicated

are reactant (R), product (P), transition states (TS1 and TS2), and

the oxocorbenium cation/anion intermediate (I1) (From Dinner

et al.637).
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sional tunneling (EA-VTST/MT), provides a procedure for intro-

ducing quantized nuclear motion, given the classical PMF

obtained from MD simulations, into the calculation of the rate

constants of enzymatic reactions. The EA-VTST/MT method

combines the POLYRATE program, for computing rates of gas-

phase reactions647–649 with free energy simulation methods

employing combined QM/MM potentials in CHARMM.248,256 In

the EA-VTST/MT method, the classical PMF is first converted

into a quasiclassical result, which includes quantum effects for

all bound vibrational coordinates (but not in the reaction coordi-

nate at the transition state), by making use of instantaneous nor-

mal mode frequencies along the reaction coordinate. This is fol-

lowed by incorporating the contributions from nuclear tunneling

in the reaction coordinate at the transition state based on opti-

mized tunneling paths averaged over the transition state ensem-

ble. In this procedure, the quantized system evolves in a fixed

protein and solvent field; this ‘‘frozen bath’’ approximation is

sufficient in many cases. Corrections to the frozen bath approxi-

mation can be introduced in computing the tunneling transmis-

sion coefficient by allowing for relaxation of the protein envi-

ronment.644

Nuclear quantum effects can also be incorporated into

enzyme kinetics modeling through Feynman path integral simu-

lations, employing both classical533 and combined QM/MM

potential functions.650,651 For combined QM/MM potentials, a

Fock matrix updating procedure has been implemented into the

QUB (Quantum Update in Bisection sampling) module for cent-

roid path integral simulations, such that only the matrix elements

for atoms that are treated with the path integral approach need

to be recomputed. A method has been developed that combines

the path integral approach with free energy simulations and um-

brella sampling (PI-FEP/UM). This method yields improved

convergence in computed KIEs.650 As in the EA-VTST/MT

method, the classical PMF is first determined by umbrella sam-

pling. Centroid path integral simulations are then performed to

obtain nuclear quantum contributions. Finally, free energy per-

turbation simulations are carried out to change the atomic

masses to heavy ones by using the bisection sampling scheme to

obtain KIEs.650 The PI-FEP/UM calculations include both quan-

tized vibrational free energies and tunneling. The method has

been applied to several chemical reactions in solution and in

enzymes, and KIEs have been determined for hydrogen and

heavier elements (carbon and nitrogen).650,652

VIII. Analysis Techniques

The large amounts of data generated by MD and Monte Carlo

simulations would be of limited utility without analysis facilities

for deriving pertinent information about the system from them.

During a simulation, CHARMM can intermittently write to the

output file the values of all energy terms, as specified by the

user in the DYNAmics command, together with some basic

statistics (short-term and long-term averages, fluctuations and

drifts). In addition, CHARMM can write the energy values, bi-

nary coordinates, velocities, and forces at user-specified intervals

to files in a compact text format. All other analysis of the simu-

lation, with a few exceptions (e.g., free energy calculations with

PERT), is done via post-processing of the coordinate and/or ve-

locity trajectory files that are generated in the simulation.

CHARMM has comprehensive and flexible analysis facilities,

which allow the efficient extraction of information from individ-

ual structures or trajectories for the calculation of many system

properties. In this section, a description of the tools available for

the analysis of static structures is given first, followed by a

description of tools for the extraction and analysis of averaged

and time-dependent information from trajectories. The section

ends with a discussion of modules for more specialized analyses.

Together with the general atom selection mechanism, these mod-

ules allow a very wide range of analysis to be performed.

Should the need to program some new analysis functionality

arise, there is a set of predefined hooks into various parts of

CHARMM that allow relatively straightforward modifications to

be implemented without changes to other parts of the program

(see Section IX.A.).

The generation of the binary trajectory file during an MD

simulation with CHARMM is controlled by the DYNAmics com-

mand. The trajectory I/O commands (TRAJectory READ/WRITE/
INQUire) allow individual snapshots to be extracted from a tra-

jectory (TRAJectory READ), so that all CHARMM analyses and

processing functions for individual structures, as well as external

programs, can be applied to a trajectory by using the looping

capability of the CHARMM scripting language. This mode of

analysis is thus very general, and allows operations to be per-

formed on subsets of atoms that may change between snapshots

on the basis, for example, of geometric criteria. New trajectories,

with a subset of atoms or with coordinates recentered around a

solute or superposed onto a reference structure, can also be

constructed from one or several existing trajectory files.

VIII.A. Individual Structures

Structure

A large number of geometric characteristics of a structure can

be determined using the coordinate manipulation (CORMAN)

and internal coordinate (IC) modules (see Sections IX.B. and C.).

Some examples are individual atom positions, distances between

atoms, bond angles or torsion angles, and properties involving a

larger number of atoms, such as the radius of gyration, least

squares plane, accessible surface area, occupied and empty vol-

umes, ring puckering, or helix axis and dipole moment. There

are commands to find all distances, or just the minimum or max-

imum distances, between two sets of atoms specified with the

general selection facility. Lists of hydrogen bonds and pairwise

contacts between selected sets of atoms, as well as histograms

of atom densities (radially or along the coordinate axes) can be

easily generated. Coordinate differences, or RMS-deviations

with or without least-squares superposition, can be calculated

between two different coordinate sets (i.e., the main and com-

parison sets). Protein secondary structure can be analyzed using

the definition of a- and b-structures proposed by Kabsch and

Sander.653
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Energetics

The potential energy of the whole system, a subset of the sys-

tem, or the interaction energy between two subsets (INTEraction
command) can be computed. Following an energy evaluation,

the forces acting on all atoms, a breakdown of the energy into

contributions from each atom, and the pressure are available.

The user has control over which energy terms to include in the

analysis, and the values of the individual terms are accessible at

the CHARMM script level as variables.

VIII.B. Trajectories

A CHARMM trajectory, which is stored in one or more files,

can be analyzed directly by several CHARMM commands and/

or modules (e.g., COOR, IC, VIBRan, CORRel, NMR, NOE,
RDFSol, MONItor). Prior to analysis, CHARMM trajectories can

be processed by the MERGe command, for example, to reduce

the number of coordinate sets in the trajectory, to remove a set

of atoms (this has to be accompanied by the creation of a

matching PSF), to orient the system with respect to a reference

structure, or to undo the effects of recentering of molecules due

to the use of PBC in the simulation.

Average Properties

In the CORMAN module a number of average properties can be

calculated, including the average structure and RMS fluctuations

around the average; distance and contact matrices (COOR
DMAT),299 which can be projected onto a reference distance ma-

trix for analysis of, e.g., native contacts; and the distance fluctu-

ation matrix and positional covariance matrix (COOR COVA),
which can be used to reveal regions that move together.31,654–656

Other average quantities which can be calculated include hydro-

gen bond average numbers and average lifetimes, histograms of

hydrogen bond lifetimes and lengths; density, charge or dipole

histograms; and internal coordinate averages. The pairwise

RMSD can be calculated between all frames in one or two tra-

jectories (in the latter case, element aij is the RMSD between

frames i and j in trajectories 1 and 2, respectively). The MONI-
tor command collects statistics on transitions between different

minima for specified dihedral angles.

Techniques of conformational clustering are important tools

for analyzing the nature of the conformational space sampled

during the course of a molecular simulation. Clustering methods

based on K-means or hierarchical techniques298 can provide esti-

mates of the extent and nature of conformational basins sampled

during the simulation. A K-means clustering algorithm is imple-

mented in CHARMM.657 This algorithm requires input of a time

series for specific sets of conformational variables - for example,

sets of flexible torsion angles for a molecular system throughout

the course of an MD trajectory - and a maximum radius for the

Euclidian root-mean-square variation within any cluster. The K-

means clustering algorithm then uses a simple neural-network

scheme to iterate to a self-consistent set of clusters in the space

of the specified variables. The clustering methodology is inte-

grated with the CORREL and MANTime correlation function

and time series manipulation methodologies in CHARMM and

thus permits the flexible construction and combination of various

time series for cluster analysis.

Another clustering technique implemented in CHARMM

involves the projection of pairwise RMSDs between selected

atoms in N frames of a trajectory onto a 2D plane, such that the

Cartesian distances between the representative 2D points gives

an approximation (least squared fit) to the RMS deviations

between the actual structures.171,658 Other clustering methods

can easily be introduced into CHARMM using the appropriate

scripts. An example is given in Krivov and Karplus.166

Time-Dependent Properties

Time series of several predefined types of geometric and ener-
getic variables can be extracted for user-selected sets of atoms
in the correlation module (CORREL) in an efficient manner,
since the trajectory is processed only once to extract all the
data. These time series can then be further manipulated; for
example a vector time series can be normalized or converted to
spherical coordinates, an angle time series can be made continu-
ous, or the angle formed by two vector time series can be com-
puted at each time point. The time series can be read from or
written to external files. Auto and cross correlation functions can
be computed from the time series data, either directly or using a
second order Legendre polynomial.

Examples of time-dependent properties that the CORREL

module can extract from a trajectory for a selected set of atoms

include fluctuations in vectors, components, and lengths defined

by atom positions; energy and hydrogen bond properties; and

the dipole moment for selected atoms or for a solvent shell of

specified thickness. See Supporting Information for a more

complete list.

NMR Analysis and NOE Distance Restraints

The NMR facility may be used to analyze a number of NMR-
related properties from a trajectory. Among the possible proper-
ties are those related to dipole-dipole fluctuations that govern
the relaxation rates in solution NMR, such as T1, T2, NOE,
ROE, and the Lipari–Szabo generalized order parameter,324 as
well as nonisotropically averaged properties observed for
oriented membranes and liquid crystals, such as chemical shift
anisotropy (CSA) and deuterium quadrupolar splitting and dipo-
lar coupling order parameters.31,137,659,660 Entropies associated
with the generalized order parameters are estimated using the
simple diffusion-in-a-cone model.661 A trajectory can be ana-
lyzed as a whole, or in a series of windows of user specified du-
ration, with or without removal of overall translation/rotation
individually for each window; in the multiwindow case, aver-
ages and standard deviations of the extracted properties are
reported. For trajectories created with a polar hydrogen represen-
tation, the NMR facility can add missing hydrogens for use in
calculations involving proton NMR measurements. The NOE
module, which is primarily used to introduce distance
restraints based on NOE data for structure refinement,301 also
allows the analysis of how well a structure fits the restraints (see
Section III.F.).

Solvent Analysis

The aqueous environment of biological macromolecules plays an

essential role in their function. One of the advantages of MD
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simulations of systems with explicit solvent is the ability to

obtain a description at the atomic level of the interactions of the

solvent with the macromolecule. Accordingly, CHARMM con-

tains a suite of utilities for the analysis of solvent properties. In

addition to the general analysis modules (e.g., CORREL), there

is a facility (COOR ANALysis) for direct analysis of solvent

properties. This makes possible the calculation of solvent–sol-

vent, solvent–solute or solute–solute pair correlation functions

with an excluded volume correction; translational and rotational

diffusion, in shells of user-specified thickness around a set of

atoms; velocity autocorrelation functions; number, charge or

dipole density in 3D around a set of atoms; hydration numbers;

the distance dependent Kirkwood g-factor54; and the dipole

moment of a shell of solvent molecules. The pair correlation

functions, as well as the distance dependent Kirkwood g-factor,
charge–dipole or dipole–dipole orientational correlations func-

tions between a set of reference atoms and solvent molecules,

can also be computed using the RDFSOL module,662,663 which

is more efficient for large systems due to the use of a spatial

decomposition when computing interatomic distances. The

RDFSOL module is tightly integrated with the CRYSTAL/

IMAGE functionality in CHARMM, which is particularly useful

for solvent–solvent analyses.

Another useful solvent analysis tool is the COOR HBONd
command, which uses the lists of hydrogen bond acceptors and

donors in the PSF; no explicit H-bonding terms are included in

the energy functions, but the acceptor/donor information simpli-

fies the analysis, which is purely geometric. With polar- or

all-hydrogen representations, it is advantageous to define the

hydrogen bond in terms of the hydrogen and acceptor atoms; the

relevant hydrogen atoms in this case are designated as donors.

The COOR HBONd command takes two user-defined atom

selections, one for the hydrogen bond donors (hydrogens) and

one for the hydrogen bond acceptors, and determines from them

all hydrogen bonds meeting the specified distance and angular

criteria and calculates related properties. The calculated proper-

ties include the average number of hydrogen bonds, their geo-

metries and lifetimes, and their length and lifetime histograms.

The COOR CONTact variant of the command performs a similar

function, except that it disregards the hydrogen bond donor/

acceptor status of the atoms to be analyzed; it is useful, for

example, for hydrophobic contact analysis. For the case where a

solvent molecules moves in and out of contact with a given set

of solute atoms during the simulation, the ‘‘intermittent’’ resi-

dence time (i.e., the time during which solvent molecules are

present continuously within a given distance of the solute atoms)

can be obtained using COOR ANALysis, as the relaxation time

of the auto-correlation of the function bk(t); bk(t) 5 1 if water

molecule k is within the specified volume at time t, and 0 other-

wise.664 For solvent analysis on simulations with periodic

boundary conditions, the commands described here take care of

the periodicity for simple lattices (for COOR ANALysis ortho-

rhombic lattices; for COOR HBONd orthorhombic, truncated

octahedral, rhombic dodecahedral, and 2D or 3D rhomboidal lat-

tices). For solute–solvent analysis it can be advantageous to pre-

process the trajectory such that the solute is placed in the center

of each frame (MERGe RECEnter). In this way, subsequent

analyses of solvent properties in the vicinity of the solute can be

performed without the need to account for the periodicity of the

system, as would otherwise be necessary for cases in which part

of the solute molecule is outside, or near the edge, of the

primary box.

VIII.C. Running Statistics

The ESTATS facility calculates running averages and standard

deviations (fluctuations) of the energies of the system and its

components ‘‘on-the-fly’’ during an MD simulation or any other

calculation that serially calls the main energy routines. It collects

the data at a user-specified step length for a user-specified inter-

val during the calculation. The averages and fluctuations can be

written to standard output or external files; they can also be

assigned to CHARMM script variables.

IX. Miscellaneous Tools and Applications

To use CHARMM functionality for production calculations such

as MD simulations, free energy estimates, and reaction path

sampling, the initial state of the system has to be set up prop-

erly. CHARMM has an extensive set of model-building facilities

that includes a suite of tools for manipulating the Cartesian and

internal coordinates of the system, and an automated procedure

for constructing the topologies of large biopolymers (proteins,

nucleic acids, and carbohydrates) from their constituent units.

As part of its model-building capabilities, CHARMM also has a

course-grained macromolecular docking facility called EMAP.

For analyzing the results of calculations, the coordinate manipu-

lation tools can be used in conjunction with the highly flexible

scripting language (Section II.C.), the extensive set of analysis

tools described in Section VIII, and novel analysis routines

implemented directly in the CHARMM code by the user through

designated ‘‘generic’’ subroutines. Although CHARMM data

files can be used by external graphics programs for visualization

of the initial system as well as structures resulting from produc-

tion calculations, CHARMM has its own internal graphics facil-

ity, which has particular strengths. This section presents an over-

view of these CHARMM facilities, as well as some additional

details related to CHARMM use.

IX.A. Some Details of CHARMM Use

Generation of the Molecular System

Simulations of biomolecules and their environment in

CHARMM make use of a basic protocol that is required to es-

tablish the critical data files. The reader should refer to the

methodology introduced in Section II.A. CHARMM calculations

are all initiated by specifying (and reading in) the topology file

and parameter file for the system of interest. As noted in

Section III, CHARMM provides topology and parameter files for

proteins, nucleic acids, lipids, carbohydrates, certain solvents

and many other relevant small molecules for a number of force

fields, including those currently under development. Once speci-

fied in this way, the system being simulated is defined in terms

of a set of ‘‘segments’’ consisting of groups of atoms called

‘‘residues.’’ Residues in CHARMM can represent a particular
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amino acid or nucleotide, a solvent molecule, etc. A set of resi-

dues is grouped together and ‘‘generated’’ using the GENErate
command into a particular CHARMM segment of an internal

file structure called the PSF; many biological macromolecules

(proteins, nucleic acids) are linear polymers, and the GENErate
command uses rules, as specified in the topology file, for cova-

lently linking adjacent residues into a linear chain. The designa-

tion PSF was originally used for proteins but now is a general

term used for describing the atomic connectivity, atom types and

atomic charges for all of the molecules studied in CHARMM.

Several segments can be generated by repeated application of

the GENErate command, and these segments can be modified

using PATChes to provide disulfide bond connectivity, alternate

protonation states, modified terminal groups etc. Generally, each

individual protein (or nucleic acid) chain is denoted as a sepa-

rate segment; together with solvent, ligand or counter ion ‘‘seg-

ments,’’ the chain segments make up the PSF. Once the PSF is

generated, the atomic coordinates may be read in or built using

the internal coordinate (IC) commands or the HBUILD routine

to place hydrogen atoms665 and complete the structure. Exam-

ples of CHARMM input scripts can be found on the CHARMM

website (www.charmm.org) and in the ‘‘test’’ directory of all

CHARMM distribution packages.

Data Files

Most of the information needed to specify the molecular system

(RTF, parameters, coordinates) in CHARMM is stored in simple

text files. The only main data file used by CHARMM that is in

a binary format is the trajectory file, and CHARMM has built-in

commands (DYNA FORMat/UNFOrmat) to convert this to/from

a text file for interchange between computer systems with differ-

ent binary representations. External data (text) files, e.g. contain-

ing a list of dihedral angles to be used with the internal coordi-

nate manipulation commands for model building, can be

streamed directly into the CHARMM input file via the STREam
command. The CHARMM user specifies all file locations, file

names and file formats to be used—the program makes no

hidden assumptions about file locations or file-name extensions.

Atom Selections

The need to specify a subset of atoms, common to many opera-

tions in CHARMM, is met by a general recursive atom selection

facility. Atom sets can be selected based on a number of proper-

ties including: atom number, IUPAC name or chemical type;

segment identifier; residue identifier, name or number; distance

from a point or other atom(s); connectivity (bonded to a selected

atom, all atoms belonging to the same residue or group); the

Cartesian coordinates; or any of several other properties con-

tained in internal CHARMM arrays (e.g., charge, mass, force).

Ranges and wildcards are allowed where appropriate, so that a

single specification can encompass multiple atoms. Selections

can be combined using Boolean operators (.NOT., .AND., .OR.),
and they may also be given a name for later reference with the

DEFIne command. For example, the command DEFIne
INTERESTING SELEct TYPE C*.AND. IRES 40:50 END speci-

fies the selection of all carbon atoms in residues 40 through 50,

inclusive, and assigns this subset of atoms to the name

‘‘INTERESTING.’’

Units

CHARMM uses a mixed set of units that are commonly used by

chemists. The distinct system of units for most commands is the

‘‘AKMA’’ system, where distances are measured in Angstroms,

energies in kcal/mol, masses in Atomic mass units and charge

in units of electron charge. Using this system, 20 AKMA time

units is roughly 0.978 picoseconds. For convenience, all input

and output of the time is in picoseconds. Other common units

are also included; for example, vibrational frequencies are pro-

vided in wavenumbers (cm21). The documentation should be

consulted for details on units.

Adding Functionality

CHARMM has a mechanism for allowing users to implement

their own special-purpose subroutines without altering other

parts of the program. Six main ‘‘hooks’’ into CHARMM are pro-

vided as templates for such modifications. USERSB is an empty

subroutine called by the USER command, intended as a general

CHARMM subroutine template; USERE calculates an additional

user-supplied energy term; USRSEL carries out a user-supplied

atom selection; USERNM specifies a user-supplied vector for

normal mode analysis; USRTIM specifies a user-supplied time

series for use with the CORREL facility; USRACM is a user-

supplied accumulation routine called at the end of each step of

dynamics for direct statistical analysis, as an alternative to post-

processing analysis. This interface mechanism is designed for

short, one-time efforts. If a user-supplied subroutine is of

general use, the routine should be rewritten to conform to

CHARMM coding standards and incorporated into the program

as an additional feature (see Section XI.A.).

IX.B. Coordinate Manipulation and Analysis Tools

The coordinate manipulation (CORMAN) facility (COORdinate
command) primarily handles the manipulation and analysis of

structure and dynamics based on Cartesian coordinates. Seven

functions of this facility were described in the first CHARMM

article.22 The facility now comprises a much more extensive set

of command options. There are two primary sets of coordinates,

the main set and the comparison set, and the various coordinate

manipulation commands can be used with any subset of either

set. The options also function with image atoms defined by peri-

odicity or symmetry. In addition, a second comparison set can

be used with the SECOnd option for all of the commands

(COMP2 keyword); this is useful when there are two compari-

son structures, or when the main or first comparison coordinate

set is being used for another function. The coordinate arrays can

be assigned the system velocities (e.g., the comparison coordi-

nates contain the velocities at the end of an MD simulation) or

the system forces. A weighting array may be employed as a gen-

eral utility (4th) array; mass weighting of the coordinate arrays

(often used when they are assigned the system velocities or

forces) is invoked with the MASS option. Examples of the
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coordinate manipulation aspect of the COOR command are

COOR ORIEnt RMS, which performs a best-fit of one structure

with another (minimizes RMS difference) and COOR AVERage,
which generates an interpolated structure. An example of the

coordinate analysis aspect of the command is the COOR
COVAriance option, which calculates a covariance matrix from

the system’s dynamic fluctuations. See Supporting Information

for a more complete list. For more information and specific

references for these command options, see the ‘‘corman.doc’’

section of the CHARMM documentation.

IX.C. Internal Coordinate Tools

The internal coordinate (INTCOR) facility (IC command) pri-

marily deals with the interconversion between internal coordi-

nates and Cartesian coordinates and the analysis of structure and

dynamics based on internal coordinates. The original form of

this facility has been previously described.22 Together with the

COOR command and options, the IC command options provide

a complete nongraphical model-building facility. The facility

now contains two independent internal coordinate table struc-

tures, the main and secondary IC tables. Each row of the tables

has 10 components (four atom identifiers, two distance values,

two angle values, one dihedral angle value, and a logical flag

indicating whether the four atoms represent a linear or branched

topology). Given the positions (Cartesian coordinates) of any

three of the atoms in a row, the position of the fourth atom can

be defined in relative terms with three values: a bond distance, a

bond angle, and a dihedral angle specification. For a chain of

connected atoms (such as a protein), the information in the inter-

nal coordinate tables allows the Cartesian coordinates of all the

atoms of the chain to be calculated from any three adjacent

atoms with known positions. The need for the calculation to be

able to proceed in either direction along the chain (e.g., from

the N-terminal end to the C-terminal end of a polypeptide chain,

or vice versa) led to the symmetric structure of the rows in the

IC table (bond length–bond angle–dihedral angle–bond angle–

bond length). By necessity, the IC tables overspecify the struc-

ture. CHARMM employs an improper dihedral angle internal

coordinate to specify the geometry at branch points, in which

the central atom, from which the branching occurs, is the 3rd

atom in the entry. The IC command options include IC
GENErate, which generates an IC table for the selected atoms;

IC BUILd, which transforms the internal coordinates to Carte-

sian coordinates; and IC RANDom, which randomizes selected

torsion angles. See Supporting Information for a more complete

list.

The internal coordinate tables are used by several other parts

of CHARMM. The MCMA (Section V.D.) method uses them

extensively for generating move sets.143 The tables are also

used for internal coordinate restraints, which may be used to

restrain the system to particular internal coordinate values

(CONS IC command). The vibrational analysis tools use the IC

tables to present internal derivatives for normal modes of

vibration. The IC tables are also used in adaptive umbrella

sampling (Section VII.C.) and conformational searching with

the Z Module (Section V.D.) or GALGOR facilities. The latter

employs a genetic algorithm and is designed for docking small

flexible ligands and rigid proteins.666 For more information on

any of these commands and features and for specific referen-

ces, see ‘‘intcor.doc.’’

IX.D. EMAP: Molecular Modeling with Map Objects

High-resolution electron microscopy (EM) is rapidly emerging

as a powerful method for obtaining low-resolution (10–30 Å)

structures of macromolecular assemblies composed of hundreds

of thousands or millions of atoms.667 Docking of the individual

macromolecular components, whose structures are available at

high resolution, into the low-resolution EM maps of these

assemblies can provide insights into the functional architecture

of the macromolecular complexes; an example is given by the

model for the actomyosin complex.668,669 The EMAP facility in

CHARMM is designed to carry out this kind of macromolecular

fitting in an efficient way.

Conventional molecular modeling is performed at atomic re-

solution and relies on X-ray and NMR experiments to provide

structural information, but the direct manipulation of very large

biomolecular assemblies using atomic models is very computa-

tionally demanding. To mitigate this problem, methods for pro-

tein-protein docking, for example, often employ coarse-graining

or other simplifying approximations.670–672 The EMAP facility

uses map objects, which are essentially rigid representations of

macromolecules that lack a well-defined internal chemical struc-

ture, but are composed, instead, of spatial distributions of certain

properties, such as electron density, charges, or van der Waals

‘‘core’’ (see below).673 EMAP allows the user to fit map objects

corresponding to individual structural components (e.g., individ-

ual protein molecules) to larger, multicomponent target map

objects (e.g., single-particle EM maps of the complexes). The

movement of the map objects is carried out through the use of

data structures called rigid domains, which contain the position

vector and orientation matrix associated with the map objects

they represent. The fitting process for large macromolecules

using these reduced representions is computationally more effi-

cient than it would be using all-atom (conventional) models.

Some macromolecular flexibility can be included by ‘‘blurring’’

the spatial distributions of molecular properties.

Several utilities are available to compare map objects and

calculate interactions between them. Four types of cross correla-

tion functions are implemented to examine the match between

map objects: density correlation, Laplacian correlation, core-

weighted density correlation, and core-weighted Laplacian corre-

lation.673 The ‘‘core’’ corresponds to the interior of the structure,

specifically that part of the structure whose density distributions

are unlikely to overlap with those of adjacent structures; the

structure is mapped to a 3D grid and a ‘‘core index,’’ which is a

measure of the depth of burial, is calculated for each gridpoint

in the structure with an iterative procedure that is based on the

position of each gridpoint relative to the surface, its Laplacian-

filtered density, and the core index of neighboring gridpoints.

The core-weighted correlation function gives more accurate

results than direct density correlations for locating correct

matches. A grid-threading Monte Carlo (GTMC) algorithm has

been implemented to search for the best fit of map objects.673

The GTMC method combined with the core-weighted density
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correlation function has been applied to study the molecular

architecture and mechanism of an icosahedral pyruvate dehydro-

genase complex.674,675 Also, map–map interactions determined

with the EMAP facility have been successfully applied in a

protein–protein binding study.676

IX.E. CHARMM Graphics

Computer visualization has become an integral part of interpret-

ing and understanding molecular data, and CHARMM provides

several means of facilitating this process. One approach to mo-

lecular visualization in CHARMM utilizes an X11 window and

a subcommand parser (GRAPHX). X11 is a widely supported

graphics standard that is supplied on most Unix-based systems

and is available as added software for other machines. The X11

display is ‘‘passive,’’ i.e., the graphics window changes in

response to typed commands (and not the mouse). This affords

flexibility through the use of a scripting language, so that, for

example, repeated complex tasks can be invoked via a single

command (STREam). Commands are available to change atom

size and color, change bond thickness, add atom-based labels,

control which parts of the PSF are drawn, scale the image size,

switch in and out of side-by-side stereo mode, define clipping

planes, enable depth cueing, and perform other standard graphics

operations. The immediate graphical feedback can also serve as

a learning aid for new users of the CHARMM program. Exam-

ples of figures generated with the use of the CHARMM graphics

facility appear in Woodcock et al.571 The GRAPHX rendering

model has been kept simple, so that even a large molecular sys-

tem can be rendered quickly; stored trajectories for the system

can be rendered directly to the screen to produce ‘‘on-the-fly’’

animations of an MD simulation. Details are given in the

CHARMM documentation.

The graphics facility has aspects that make it well suited for

use with other parts of CHARMM. The first is its direct use of

the internal data structures of CHARMM, including the PSF,

without an I/O step. This can facilitate the design of CHARMM

input scripts (by allowing immediate visualization of coordinate

manipulations, for example), especially when image atom trans-

formations are involved. The fact that bonds are drawn as they

are defined by the PSF, and not by interatomic distance

searches, is also useful for the diagnosis of model-building prob-

lems or in multiscale modeling applications. A second feature of

the facility is that, through the use of the general atom selection

feature in CHARMM, the coloring of atoms can be based on

many of the atom-related properties that are either stored or can

be computed during a CHARMM run. For example, atoms can

be colored according to their interaction energy or the forces

from the last energy evaluation.

In addition to the CHARMM graphics facility, molecular vis-

ualization based on CHARMM calculations can be performed

with external graphics programs such as VMD677 and Python/

VPython,678–680 in conjunction with appropriately formatted

CHARMM output files. Standard file formats for CHARMM

output files include (of generality) Brookhaven PDB format,

CARD coordinate file format (with or without the PSF), or bi-

nary coordinate trajectory file format (with the PSF). In addition

to these standard file formats, the CHARMM graphics facility

(which can be compiled without X11) provides for several

others, notably a PostScript format (a close copy of the X11

screen drawing), and the output of molecular coordinates as a

scene description for POV-Ray, a widely used and freely avail-

able ray-tracing program (www.povray.org). The primary use of

the ray-tracing export facility in CHARMM is to produce high-

quality figures for publications.681–685 Examples of the output of

this facility are shown in Figure 8. The image files produced can

be combined to make animations in the MPEG video format.

The use of the CHARMM graphics facility with these external

graphics programs allows the generation of publication-quality

graphics in a reproducible, script-based manner.

Accelrys has historically provided two graphics programs,

Insight II and QUANTA, which can be used for graphical repre-

sentation of CHARMM results. An automatic parameter estima-

tion option for the CHARMm (commercial version) force field

developed by F. A. Momany and R. Rone is available in

QUANTA.686 In recent years, progress has been made in provid-

ing a closely integrated CHARMm interface in a product

called Discovery Studio (http://accelrys.com/products/discovery-

studio/), which contains a library of preconfigured CHARMm

Figure 8. Six-panel figure depicting the results of a simulated

annealing procedure for an antigenic peptide (top row) and an

escape mutant (bottom row). The left hand column shows the pep-

tide sequences in the reference orientation used to align the back-

bones for the middle and right hand columns. The middle column

shows the aligned backbones and the right hand column shows only

the side chains, in the same alignment, for the final coordinates

from 100 simulated annealing runs. The small Val-Pro hydrophobic

patch readily apparent in the top right panel is a likely antibody rec-

ognition site.724 Each panel was produced from POV-Ray files

exported via the CHARMM graphics facility; the files were edited

to add the background and transparency features, and then processed

into images via the POV-Ray program.
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workflows created ‘‘behind the scenes’’ using the workflow man-

agement program Pipeline Pilot. An automated force field typing

utility is available for use with all CHARMM/CHARMm force

fields from the Discovery Studio interface.

X. Performance

Performance is one of the primary concerns in macromolecular

simulations because longer simulation times (10–100 or more

ns) are now often of interest for systems of increasing size.

Many of the questions being addressed (e.g., free energy differ-

ences due to mutations) are more quantitative and require

lengthy calculations to minimize the statistical error. To mini-

mize the numerical error, double precision for floating point

operations is used in much of CHARMM. The application of

this standard, which is important for the reliability of the results,

particularly in long simulations, carries with it a significant

computational cost.

The performance of a program involves factors in at least

three general categories: (1) the efficiency of the code running

on a single processor, (2) the scalability of the code to many

processors in parallel, and (3) the portability of the code to new

computer hardware. This section describes the status of develop-

ments in the CHARMM program that concern these attributes

and provides some relevant performance benchmarks.

X.A. Scalar Enhancements (FASTer options),

Semiautomatic Code Expansion

A first step toward improving code performance involves single-

processor enhancements. Recent developments include improve-

ments in the optimized Ewald-direct calculation (real-space part

of the Ewald sum) and the periodic boundary list routines. In

addition, in the CHARMM program there are several ways for

the user to carry out performance optimizations. They are con-

trolled by the choice of the compiler preprocessor keywords and

use the runtime FASTer and LOOKup commands. The optimal

preprocessor keywords and FASTer command options to use in

a given calculation depend not only on the problem (system

size, type of calculation), but also on the computer environment,

since processor architectures and compilers differ. Although

there are general guidelines, it is generally up to the user to

determine which compilation and runtime options result in the

most efficient code in a given case.

EXPAND Preprocessor Keyword

A number of preprocessor keywords are concerned with obtain-

ing the best performance for individual systems. This subsection

describes the use of the EXPAND and associated keywords.

Other performance-related preprocessor keywords are discussed

later; for a more complete discussion of the preprocessor, see

Section XI.A.

The ‘‘EXPAND’’ preprocessor keyword is designed specifi-

cally to enhance the performance of the CHARMM code

through preprocessor-level optimizations that supplement the

intrinsic optimization procedures of modern Fortran compilers.

The ‘‘EXPAND’’ keyword instructs the compiler preprocessor to

automatically expand the innermost loops in the selected rou-

tines. This is useful because there are many IF statements in the

loops of the nonbonded interaction energy routines that are

needed to support a variety of CHARMM methods; expansion

moves these IF statements out of the loops. More recently this

kind of expansion has been extended to whole subroutines. The

procedure essentially introduces variables into the name of a

subroutine that correspond to branches of its internal IF con-

structs, so that the subroutine is transformed into a ‘‘generic’’

parent subroutine. At compile time, the parent subroutine is

automatically replaced by numerous daughter routines, each

occurring within a larger IF block structure as specific instances

of the variable parent subroutine, but with their internal IF state-

ments removed. Hence, in this expansion procedure, a subrou-

tine can be written and tested as a single routine with many in-

ternal constant IF tests, and then expanded into a large set of ef-

ficient routines that lack the IF tests. Expansion of subroutines

with this technique can improve performance by 10–30%,

depending on the code and the compiler.

FASTer Command

The FASTer command controls the use of the fast energy rou-

tines in CHARMM, which are essentially streamlined, optimized

versions of the slower, full-feature routines. Many internal IF

statements, as well as analysis and print options, second deriva-

tives, and support for several nonbonded energy options are

absent from the ‘‘fastest’’ versions of the fast routines. This sig-

nificantly speeds up their execution times, but places some

restrictions on their use. The options for the FASTer command

are: OFF, DEFAult, GENEric, ON, and EXPAnd. The OFF
option disables the faster routines entirely and invokes the slow,

full-feature energy routines. The DEFAult option causes the use

of the fast routines when possible. The GENEric option invokes

the ‘‘generic’’ versions of the fast subroutines, which support

most CHARMM methods and options, including second deriva-

tives. The ON option invokes the faster but more limited fast

routines, and it is the default in CHARMM. The EXPAnd option

also invokes the faster routines, but with expansion as described

earlier, and it must be used in connection with the use of the

EXPAND preprocessor keyword during compilation. The

EXPAnd option generally gives the best performance, but as

mentioned, some methods and nonbonded energy options are not

supported in connection with it. (See the CHARMM documenta-

tion, under ‘‘energy.doc,’’ for further details.) Using FASTer ON
(without code expansion or lookup tables) the single-processor

performance on a standard 23,000-atom joint AMBER-

CHARMM (JAC) benchmark (DHFR with explicit solvent, peri-

odic boundary conditions and PME on an IBM p-Series,

Power41 CPUs) for CHARMM (161 ps/day of MD simulation

time) is similar to that of Amber 8 (PMEMD, 128 ps/day),

NAMD (Version 2.5, 135 ps/day), and Amber 9 (PMEMD, 197

ps/day); see also later.

Lookup Tables

In simulations of large systems with an explicit representation of

solvent (usually water), the calculation of the solvent–solvent

nonbonded interactions consumes a significant fraction (often on
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the order of 90%) of the total CPU time. The evaluation of each

interatomic interaction requires several floating-point operations,

including division, and square root operations that are quite

expensive. One approach to increasing speed is to code the rou-

tines that handle these types of limited but time-consuming oper-

ations in assembly language; however, assembly language is

difficult to modify and to port to different computer architec-

tures. Although it is used in GROMACS,687 it does not appear

to significantly increase the speed of the code over what can be

achieved with lookup tables. Lookup tables circumvent the

need for many of the floating-point calculations and hence

achieve an important single-processor speedup. Tables are easy

to set up for any functional form using the same high-level

programming language that is used for the rest of the code (i.e.,

Fortran 95). However, if there are many kinds of interactions,

the tables can require so much memory that the speed advan-

tages of this approach are diminished because of inefficient

cache-memory use. In CHARMM, a table lookup routine has

been implemented with separate tables for solvent-solvent, sol-

ute–solvent and solute–solute interactions (LOOKUP precom-

piler keyword; LOOKup command). These lookup tables (one

set containing the forces and, optionally, one set containing the

energies for each combination of atom types) are indexed using

the square of the interatomic distance, thus avoiding the square

root. The lookup routine can perform linear interpolation

between table entries for increased accuracy. This approach is

memory-efficient for solvent–solvent interactions due to the

small number of atom types involved (typically two for the com-

mon three-site water models), since only three force tables

(O��O, H��H, O��H) and possibly three energy tables are

required. The magnitude of the speedup due to the use of the

lookup table depends both on the size and composition of the

molecular system as well as on the computer system. The opera-

tion count in the inner loop is reduced by �50%, which is

reflected in typical speedups of 1.5–2 when compared with the

standard fast energy routines in CHARMM, with the higher

number obtained for systems whose interactions are dominated

by solvent688; for a system consisting of 46000 TIP3P water

molecules, without PBC, list update, or PME, 100 MD steps

take 90 s with the lookup tables, compared to 190 s with stand-

ard CHARMM or 129 s with GROMACS. In four spherical cut-

off benchmarks688 (systems ranging from 14,000 to 140,000

atoms), the double precision lookup code is faster than the as-

sembler code in GROMACS, also in double precision. The table

lookup method has been implemented in CHARMM for use

with atom-based spherical cutoffs or the real space part of PME,

with or without PBC, and it runs in parallel. In NVE simulations

using the lookup tables with linear interpolation, energy has

been shown to be well conserved.688

X.B. Parallel Computation

As many systems of biological interest, such as solvated protein

complexes and membranes, are large, and since long simulations

of such systems are often required, the performance of massively

parallel MD calculations on supercomputers or clusters of hun-

dreds or more PCs has become an integral part of the field of

computational biophysics. There are many facets to parallel MD

methods, and the reader is referred to any of several articles on

the subject for a more thorough treatment689–693 The most im-

portant element in the different methods is the choice of paralle-

lization model, which determines the manner in which the

‘‘work’’ of a calculation is distributed among the CPUs. For mo-

lecular mechanics/dynamics calculations, there are at least three

general classes of models: (1) atom decomposition (replicated

data), (2) force decomposition, and (3) spatial or domain decom-

position.

In atom decomposition, for a computer system with p CPUs,

each CPU is essentially assigned every pth pass through a loop.

For the bond energies, for example, a given CPU handles every

pth bond. For the nonbonded (van der Waals and electrostatic)

energies, which for large systems require the most computer

time, each CPU handles the interactions for every pth atom. One

of the advantages of this scheme is the load balance is very

good—i.e., the distribution of tasks among the CPUs is uniform.

In CHARMM, the loss of performance due to load balance in

the atom decomposition model is typically less than 5%, and the

model performs well for up to 32–64 CPUs, particularly on

shared-memory machines such as the IBM SP2, the SGI Altix

series, and the CRAY XT4. After recent enhancements, such as

the implementation of a column-FFT (COLFFT keyword) for

PME calculations, which reduces communication costs by parti-

tioning the system into 1-D ‘‘columns’’ and reorganizing the

FFT calculation, the atom decomposition model scales with a

parallel efficiency of �0.6 using 32 CPUs and �0.3 to 0.4 using

64 CPUs on a Cray XT4 (dual-core AMD Opteron processors)

for MD simulations of systems of 50,000–400,000 atoms with

PBC and PME (see Table 2a). On this machine, the scaling is

similar for the largest and smallest systems. On a distributed

memory cluster (8 Gb/s infiniband interconnects; see Table 2b)

the scaling is approximately the same or better at 32 CPUs, but

has a somewhat wider range (�0.2 to 0.5) for 64 CPUs, with

scaling for the larger systems that is poorer than on the shared

memory machine. This level of scaling is often considered

adequate for applications on many computer systems, and, for

certain applications, even on machines having a very large num-

ber of processors—e.g., for the generation of many independent

MD trajectories, (each of which is propagated on a fraction of

the CPUs). The disadvantage of the atom decompositon model

is that the communication costs are high for large numbers of

CPUs, because all of the data in the system must be updated on

each CPU. This cost is significantly reduced by the use of ‘‘re-

cursive doubling’’ or ‘‘hypercube’’ algorithms,694 which change

the number of necessary communication calls from P to log2P.
Still, for large systems and large numbers of CPUs, the time

spent on communication dominates the total run times (wall-

clock times), especially on distributed-memory clusters of CPUs

(as illustrated earlier), and the scheme becomes inefficient. The

atom decomposition model, which was the first one to be imple-

mented in CHARMM, is the most thoroughly integrated with

the various CHARMM functionalities. It is the default, and is

still widely used, particularly on many ‘‘local’’ clusters, which

have up to 100 or 200 CPUs that are shared among multiple

users. While most modern-day efforts to parallelize biomolecular

simulation programs focus on standard MD with either spherical

cutoffs or PME for long-range electrostatic interactions, in
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CHARMM, many of the other modules/methods that are avail-

able also run well in parallel under the atom decomposition

model. The ones that are most commonly used are: QM/MM

methods, the EEF1 solvation model, the replica (molecular repli-

cation) methods, the TREK reaction-path facility, the PERT free

energy methods, TMD, the HQBM external perturbation facility,

adaptive umbrella sampling, soft core potentials, the Drude os-

cillator polarizable model, and the VV2 operator-splitting veloc-

ity Verlet integrator. For the communication scheme, CHARMM

uses a customized version of MPI, called CMPI,695 which

includes specialized operations optimized for hypercube commu-

nication topologies and which can be useful more generally for

synchronous communication schemes in networks with higher

latency.

In the force decomposition model,689,690 the N 3 N matrix of

nonbonded interparticle interactions is partitioned into p pieces

and the set of N atoms is partitioned into b blocks, where p 5

b(b 1 1)/2. Each of the p pieces is assigned to a different CPU.

The communication cost is reduced relative to that of the atom

decomposition model, because each CPU must only obtain the

data of the CPUs assigned to the same columns or rows of the

interaction matrix, rather than all other CPUs. In principle, the

amount of data per CPU per communication call (the width of

the blocks in the interaction matrix) drops with increasing num-

bers of CPUs until the limit of b 5 N is reached (one atom per

CPU per call). The disadvantage of the scheme is mainly that

the number of necessary communication calls still rises with the

square root of the number of CPUs, since the numbers of CPUs

in each row and column increase in this way. A force decompo-

sition scheme has been partially implemented in CHARMM696

and further developments (particularly improvements in load-

balancing) are in progress.

Spatial (domain) decomposition schemes are essential for the

effective use of large shared-memory supercomputers and com-

modity clusters of thousands of processors. The central idea in

this approach is to partition the molecular system into spatial

regions and then to map or assign the CPUs to nonoverlapping

subsets of these regions. The partitioning of space, the assign-

ment of CPUs, and the partitioning of the calculation, can be

done in a number of ways,692,693,697–700 but the spatial decompo-

sition methods all have in common the important attribute that

the data in each region is communicated only to nearby regions.

This property reduces the communication costs of spatial decom-

position schemes relative to those of the other methods for large

numbers of CPUs. If the system is partitioned into cubical

regions whose side length exceeds the nonbonded cutoff dis-

tance, the CPU assigned to a given cube must at most obtain

data from the 26 surrounding cubes.698 In the direct implementa-

tion of this method, each CPU is responsible for the calculation

of (about half of) the interactions involving the atoms in its

assigned regions. The disadvantages of the method include the

fact that load balancing is not straightforward, especially in

irregularly shaped systems or ones with inhomogeneous den-

sities. Also, unless more sophisticated modifications are imple-

mented, the maximal number of regions to which CPUs can be

assigned is the total number of cubes in the system, or roughly

V/r3, where V is the volume circumscribing the system and r is

the cube side length (e.g., nonbonded cutoff distance). To over-

come the latter limitation, some programs, such as NAMD693

use what is essentially a combination of force and spatial

decomposition methods. A more recent development in spatial

decomposition models is the introduction of so-called neutral
territory methods,691,692 in which the spatial assignments of the

CPUs are done in a manner similar to that described earlier, but

in which each CPU is responsible for the interactions involving

atoms that are often in regions outside its own. In the ‘‘mid-

point’’ method, for example, a CPU is responsible for an interac-

tion if the midpoint between the interacting atoms is within r/2
of its region.692 Compared to conventional domain decomposi-

tion approaches, these methods reduce the ‘‘import volume’’ or

amount of data each processor must communicate with its neigh-

bors, and hence they can be more efficient for larger numbers

(e.g., 1024) CPUs. Recently, a spatial decomposition model

based on the BYCC list-builder314 has been partially imple-

mented in CHARMM. The scheme, which is under development,

makes use of the fact that in the cubical partitioning approach

described earlier, each CPU must obtain the data from only

those CPUs assigned to regions within the ‘‘shell’’ of cubes sur-

rounding its own region. It achieves good load-balancing by

making adjustments to the spatial assignments of the CPUs

Table 2. Approximate Scaling Behavior of the CHARMM Atom

Decomposition (AD) Model.

COLFFT DEFAULT

(a) Shared-memory supercomputer

1 100 100

2 91–95 90–95

4 87–91 78–90

8 82–95 78–83

16 71–79 66–74

32 56–63 50–60

64 39–45 28–38

128 20–28 12–21

(b) A distributed memory cluster

1 100 100

2 94–99 93–97

4 91–96 88–94

8 86–89 82–86

16 73–80 69–75

32 61–68 56–65

64 17–53 24–47

128 27–40 22–25

The table lists the percent parallel efficiency ranges of the AD model for

various numbers of processors carrying out MD simulations of proteins

in an explicit water environment (50,000–400,000 atoms total) on a) a

shared-memory supercomputer (Cray XT4, 2.6 GHz dual-core AMD

Opteron nodes) and b) a distributed memory cluster (dual-core 2.8 GHz

AMD Opteron nodes, w/8 Gb/s Infiniband interconnects). The simula-

tions were carried out with periodic boundary conditions, PME for long-

range electrostatics, an update frequency of 25 steps, an image update

frequency of 50 steps, and the BYCB listbuilder. The ‘‘COLFFT’’ col-

umns gives the results with the recently introduced COLFFT code for

faster PME calculations on large numbers of CPUs. On the larger sys-

tems and for smaller numbers of CPUs (1–4), the default code has faster

(2–10%) absolute times (not shown).
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during execution. Refinements, including support of periodic

boundary conditions and other facilities in CHARMM, are cur-

rently underway. More detailed information on the paralleliza-

tion of CHARMM, including a list of modules that run in paral-

lel, may be obtained from the ‘‘parallel.doc’’ section of the

CHARMM documentation.

X.C. Portability

Because of the variety of available computer hardware and soft-

ware platforms, and because of continual changes and improve-

ments in them over time, it is important for a program to be

portable. For example, in the past, supercomputers were based on

vector processors, and it was possible to compile CHARMM

executables that were optimized for several specific vector archi-

tectures701 (using the CRAYVEC, PARVEC, and VECTOR

preprocessor keywords); these features were removed (with

CHARMM version 31) because the architectures were no longer

of interest (although the features are available in older versions of

the program, which are archived at Harvard). Modern-day, high-

performance computer systems are based on multiprocessor

architectures (of up to 100,000 processors or more). A number of

different architectures exist, from so-called Beowulf clusters con-

nected by widely available off-the-shelf network communication

equipment, to massively parallel systems from major computer

vendors (e.g., the CRAY TX4 or the IBM Blue Gene) with much

faster and more specialized connections that improve interproces-

sor communication. CHARMM has been ported to nearly all these

machines, in addition to Macs and PCs, and most other currently

available machines, processors, operating systems, and compilers.

It also runs on clusters of special-purpose ‘‘MDGRAPE’’ MD

computers702 and with certain accelerator hardware tools (e.g.

‘‘MD Server’’ at NEC). Efforts to port the CHARMM code to

graphical CPUs (GPUs) are currently ongoing.

To make this portability possible, CHARMM development

standards have limited dependencies on vendor-specific program-

ming language extensions. In addition, CHARMM has a hierarch-

ical set of communication routines that make it easily adaptable

to different parallel libraries.695 In most cases, no source code

modifications are required to optimize CHARMM’s parallelism

for a new machine architecture, e.g., any of the variety of multi-

core processors and systems that have been introduced in recent

years.703 There are several levels of communication routines, the

highest of which is called from the standard energy routines and

is independent of the specific parallel architecture and machine

type. The lowest level routines directly call ‘‘send’’ and ‘‘receive’’

primitives from the system libraries. The precompiler determines

which routines are included in a CHARMM compilation (as

specified in the ‘‘build/pref.dat’’ file). The use of the optimal rou-

tines for a given system and machine type significantly improves

the performance of the code in some cases.

XI. Program Management

CHARMM has over 550,000 lines of source code, is under con-

tinual evolution, and has to serve a large user community. These

conditions create a set of administrative challenges. The contri-

butions of a large group of developers from different parts of

the world (see also Section XIII), often to overlapping parts of

the code, must be systematized, integrated, organized, docu-

mented, and tested in a manner that allows the program to con-

tinue to grow in an error-free manner while preserving its many

preexisting functions. In addition, the composition and distribu-

tion of the various versions of the program must be managed.

This section describes some of the administrative and testing

procedures that have been put in place, as well as the program’s

documentation and official website (charmm.org). The program’s

general organization, extent of usage, language history, and pre-

processor function are also reviewed.

XI.A. Administration and Distribution of CHARMM

General Administration and Code Distribution

Through the collaborative efforts of many developers (see Table

3) and the CHARMM manager, the ongoing administration of

the CHARMM program has evolved over more than 15 years

into a stable procedure that makes possible the continued devel-

opment of the program as a robust, versatile, and well-integrated

molecular simulation package. There are two versions of the

program: one that is available only to current CHARMM devel-

opers as a basis for code enhancements, and one that is released,

also as source code, to a large and growing community of users.

Two of the central functions of CHARMM administration are

(1) deciding which new features are to be included in the release

version of the program and (2) creating a new developmental

version. Every 6 months, revised versions are distributed. New

Table 3. Additional CHARMM Developers.

Cristobal Alambra Thomas A. Halgren Tibor Rudas

Ioan Andricioaei Sergio Hassan Paul Sherwood

Jay L. Banks Jie Hu Tom Simonson

Robert Best Toshiko Ichiye Jeremy Smith

Arnaud Blondel Mary E. Karpen Lingchun Song

John Brady Jana Khandogin David J. States

Robert E. Bruccoleri Jeyapandian Kottalam Peter J. Steinbach

Axel Brunger Ansuman Lahiri Roland Stote

Jhih-Wei Chu Michael S. Lee John Straub

Michael Crowley Paul Lyne Sundaramoothi

SwaminathanRyszard Czerminski Ao Ma

Walter ThielYuqing Deng Dan T. Major

Douglas J. TobiasRon Elber Paul Maragakis

Don G. TruhlarMarcus Elstner Francois Marchand

Arjan van der VaartJeff Evanseck Robert Nagle

Herman van VlijmenScott Feller Kwangho Nam

Joanna WiorkiewiczMartin J. Field Tom Ngo

Masa WatanabeStephen H. Fleischman Barry D. Olafson

Thomas B. WoolfMireia Garcia-Viloca Riccardo Pellarin

Hyung-June WooBruce Gelin David Perahia

Wangshen XieUrs Haberthuer B. Montgomery Pettitt

William S. YoungMichael F. Hagan Walter E. Reiher III

Past and present CHARMM developers (in addition to the authors of the

article).
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features and enhancements are incorporated into the develop-

mental revision and bugs are fixed in the release revision. At

present, December 30 and June 30 are the deadlines for submis-

sion of developments for the February 15 and August 15 distri-

butions, respectively. Submissions normally include either new

source files or modified versions of preexisting source files, or

both, as well as the required documentation, testcases, and

release notes (see also ‘‘developer.doc’’). After collection of all

the submitted code, interdependent modifications are merged,

conflicts are resolved, and the integration is finally confirmed by

checking all test cases. The CVS (Concurrent Versions System)

repository is then updated to include the new developmental and

release versions; all versions since c24 are archived in this re-

pository; versions 22 and 23, which predated the use of CVS,

are archived separately.

The CHARMM program is distributed as source code to indi-

vidual academic research groups (see http://www.charmm.org/

info/license.shtml for current information on how to obtain a

license). For-profit companies should contact Accelrys Inc.

(www.accelrys.com).

Organization of the Code

CHARMM distribution packages include the program source,

the documentation, and the support data. The content of the

current version, c34b1, is listed in Table 4. The ‘‘ChangeLog’’

files contain release notes of versions 23 through 34 (see

www.charmm.org Web site). The source code is located in the

‘‘source’’ directory. Each subdirectory of ‘‘source’’ contains

the source files of a given module, with the notable exception of

the ‘‘include’’ files, which are collected in the ‘‘source/fcm’’

directory. The preprocessor (prefx), which is required to install

an executable, and a set of shell scripts that are useful for modi-

fying the program code are found in the ‘‘tool’’ directory. The

compilation of CHARMM requires the use of the Makefile cor-

responding to the given platform; this file is created in the

‘‘build’’ directory, where installation takes place, and where

the subdirectory ‘‘UNX’’ contains Makefile templates for the

machines supported by CHARMM. A C-shell script,

‘‘install.com,’’ drives the installation procedure. The current ver-

sion of the force field parameter files is located in the ‘‘toppar’’

directory. Previous versions of these files can be found in the

‘‘toppar_history’’ subdirectory. The ‘‘doc’’ directory comprises

the full set of documentation files. The ‘‘support’’ directory con-

tains miscellaneous files that are either required for certain

CHARMM functions (e.g., specialized parameter files) or useful

as adjuncts (e.g., helpful input scripts). The subdirectory

‘‘support/aspara’’ contains implicit solvation parameter files and

‘‘support/bpot’’ contains stochastic boundary potential files

(see also http://mmtsb.org/webservices/sbmdpotential.html). The

‘‘support/form’’ subdirectory contains forms for reporting user

problems, bugs and development projects, and ‘‘support/

htmldoc’’ contains facilities for converting info document files

into html files. A few examples of image transformation files are

included in the ‘‘support/imtran’’ subdirectory. The ‘‘support/

MMFF’’ subdirectory contains a number of parameter files

required for use of the MMFF.

Table 4. CHARMM Version c34b1 Package Contents.

Directory Subdirectory Contents

build UNX Makefiles and installation scripts

ChangeLogs Release notes

doc Documentation

source adumb ADaptive UMBrella sampling simulation

cadint CADPAC interface

cff Consistent Force Field

charmm Parsing and initialization routines

correl Time series and correlation functions

dimb Diagonalization In a Mixed Basis method

dynamc Dynamics integrator subroutines

emap MAP Object Manipulation

energy Energy subroutines

fcm Include files

flucq QM/MM Fluctuating Charge Potential

gamint QM/MM method interface to GAMESS-US

gener PSF generation and manipulation

graphics Graphics subprograms

gukint QM/MM method interface to GAMESS-UK

image Periodic boundary methods

io File I/O subroutines

machdep Machine dependent codes

manip Various structure and energy manipulation

methods

mbond Multi-body dynamics

mc Monte Carlo simulation

minmiz Minimization programs

misc Miscellaneous energy and structure programs

mmff Merck Molecular Force Field

mndint QM/MM method interface to MNDO97q

moldyn Multi-body MOLDYN codes

molvib Molecular vibrational analysis facility

nbonds Non-bonded energy routines

pert Free energy simulation

pipf Polarizable Intermolecular Potential Functions

prate POLYRATE interface

quantum QM/MM method interface to MOPAC

rxncor Reaction coordinate manipulation

sccdftbint QM/MM method interface to SCCDFTB

shapes Molecular shape descriptor method

solvation Reference Interaction Site Model

squantm QM/MM method interface to SQUANTM

util String and memory space management codes

vibran Vibrational analysis facility

support aspara Implicit solvation parameter files

bpot Stochastic boundary potential files

form Forms to report problems and fixes

htmldoc Info to html file conversion scripts

imtran image transformation files

MMFF Merck Molecular Force Field parameter files

trek TReK initial path examples

test c20test Version c20 testcase input files

c22test Version c22 testcase input files

. . . . . .
c34test Version c34 testcase input files

data Data files for testcases

tool Installation scripts

toppar Topology and force field parameter files
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Language History

Because the development of the program that would eventually

become CHARMM began in the mid-1970s (see Epilogue),

before FORTRAN 77 was widely available, data structures and

advanced flow control were incorporated into the program

design. The early versions of CHARMM were written in

FLECS, since it supported a variety of control statements such

as block-if, unless, when-else, conditional, select, repeat, while
and until. To generate the FORTRAN source, the FLECS source

was processed by the FLECS compiler, flexfort. Data structures

for the connectivity (PSF), residue topology (RTF), force field

parameters (PARM), images, etc., were built in FORTRAN

array common blocks. A HEAP and STACK structure were also

implemented using very long 1D arrays in the common block to

enable internal program memory management. HEAP can be

expanded using the malloc function of the ‘C’ language. In

1993, the FLECS source was converted into standard FOR-

TRAN 77, and the parts of the code that were not convertible

were eliminated. Since version 24 (1994), all CHARMM source

code has been FORTRAN/Fortran-based except for a few rou-

tines involving machine-specific operations, which are written in

‘C’. As of July 2005, new developments are required to be

written in Fortran 95 (and allowed extensions). The Fortran 77

portion of the code is currently being converted to Fortran 95.

The Preprocessor and Its Function

CHARMM is implemented as a single, large cohesive program

that is developed for use on a variety of hardware platforms

with numerous compile options. The customization of the exe-

cutable from a single source is accomplished by the use of a

CHARMM-specific preprocessor, PREFX, which reads source

files as input and produces FORTRAN files for subsequent com-

pilation. PREFX was developed within the CHARMM commu-

nity in 1989 and provides the following capabilities:

� Allows selective compile of code based on passed or derived

flags.

� Supports a size directive allowing executables to support

larger (or smaller) system sizes.

� Handles the inclusion of FORTRAN include files in a general

manner.

� Allows semi-automatic code expansion and subroutine expan-

sion (see Section X.A.).

� Allows comments on source lines following a ‘‘!’’ (a nonstan-

dard feature in F77).

� Handles the conversion to single precision.

� Checks noncomment lines for lengths exceeding 72 places

(important for CHARMM versions preceding c35).

� Inserts keyword lists into selected FORTRAN arrays (or prints

them on execution).

� Processes inline substitution of variable or subroutine names.

The determination of what modules/methods are included in

a CHARMM executable depends upon the keyword list in the

‘‘build/platform/pref.dat’’ file. The keywords in this list corre-

spond to various methods and capabilities of the CHARMM pro-

gram (e.g., ‘‘GBMV’’ module), and the preprocessor uses them

to select the parts of the code to be compiled. For convenience,

the default pref.dat list is extensive, so that ‘‘out-of-the-box’’

compilations of CHARMM may result in executables containing

features that are not necessary for the user’s intended applica-

tion, and this may in some cases reduce speed. The user may

improve the performance of the executable by removing the pre-

processor keywords corresponding to methods that are not

needed, and then recompiling. Although the various methods in

CHARMM are designed to be modular, there exist significant

interdependencies, so that the user is advised to carry out these

preprocessor keyword list modifications with care and to check

the results for consistency in test calculations.

Version Chronology

A chronology of the developmental and release versions of

CHARMM since the distribution of version 22 on January 1,

1991 is displayed in Table 5. CHARMM version 19 was finalized

with the accompanying parameter set PARAM19 in 1989. Earlier

versions were distributed at varying time intervals. When the

FLECS to FORTRAN source code conversion was completed, the

need for a version control system was recognized, and the CVS

system was introduced into the management of CHARMM with

version 24 in 1994. Since then, all files in the CHARMM program

have been subject to CVS control. As of c24a1, CHARMM pro-

gram distributions were divided into developmental and release

versions. Developmental versions carry newly introduced features

and enhancements that are in the testing phase, and release ver-

sions contain only stable and tested modules. The current conven-

tion for version numbering began with version 26. In ‘‘cnn(a/
b)m,’’ c is for CHARMM, nn is the version number, a (alpha) is

for developmental, b (beta) is for release, and m is the revision

number. For example, c32a1 is CHARMM 32 developmental re-

vision 1 and c31b1 is CHARMM 31 release revision 1.

The last column of Table 5 lists new methods and features

introduced into each developmental revision, most of which have

been described in this review. Interfaces have been implemented

for MOPAC QM/MM, GAMESS-US, GAMESS-UK, Q-Chem,

CADPAC, POLYRATE, and SCC-DFTB programs. Three inde-

pendent free energy simulation modules were implemented in ver-

sion 22. As detailed in Section III.D., a large number of implicit

solvation and implicit membrane models have been incorporated

into the energy code. They are: PBEQ, EEF1, ACE, SASA, GEN-

BORN, GBMV, GBSW, COSMO, SCPISM, FACTS, GB/IM,

IMM1, and their variants. Parallelization of CPU intensive code

began as early as 1992. The current version supports a variety of

parallel platforms based on SOCKETS, PVM, MPI, LAMMPI, and

MPICH. In 2003, CHARMM was modified to accommodate simu-

lations of systems as large as 1010 atoms. Segment, residue, atom

type, and residue ID names were expanded to eight characters. The

data file format was also expanded in a manner that ensures back-

ward compatibility. The changes were implemented in c30a2x,

finalized in c31a1, and released in c31b1.

XI.B. Testing

An essential requirement for efficient code development and

porting to new machine and processor architectures is the avail-
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ability of an effective suite of test cases. Test cases are continu-

ously added to CHARMM to test newly implemented features

across various platforms and machine types and also to provide

users with example input files. In addition, old test cases are

used to test newly added methods or features for compatibility

with the rest of the code. This is done by verifying that the new

CHARMM code generates the expected results for the old test-

cases. In the ‘‘test’’ directory, subdirectories corresponding to

each CHARMM version contain test case input files for the

features that were added in that version. The ‘‘test/data’’ sub-

directory contains data files needed to run the test cases. In

c34b1/test, there are 460 test case input files contained in 21

subdirectories.

Modifying the potential energy function requires extensive

testing of its derivatives. A basic test for the coding of

potential energy functions is to verify that the analytical

forces Fi are consistent with the variation of the total poten-

tial energy E(r1,r2,. . .,ri,. . .,rN). In CHARMM, this can be

tested explicitly using the TEST FIRSt command, which com-

pares the analytical forces to the finite-difference estimates of

the forces; for the latter, the x-component for the ith atom is

given as:

Table 5. Chronology of Developmental and Release Versions of CHARMM Since 1990.

Year Developmental Release New featuresa

1991 c22.0.b, c22.0.b1 BLOCK, PERT, TSM

1992 c22, c22g1, c22g2 QUANTUM, CRYSTAL

C23al, c23a2 Parallel code, TNPACK

1993 C23f, c23f1, c23f2 FLECS to FORTRAN 77 conversion, RISM, MMFP, REPLICA

1994 C24a1, c24a2 c23f3, c23f4 Clusterb, GAMESS interface, SSBP, CVS

1995 C24a3 c23f5 FMA, 4D dynamics, DIMB

C25a0 c24b1 PBOUND

1996 C25a1, c25a2 c24b2, c24g1 MMFF, PBEQ

1997 C25a3 c24g2 Lambda dynamics, CADPAC interface

C26a1 c25b1 MBO(N)Dc

1998 C26a2 c25b1 LONEPAIR, GALGOR

C27a1 c26b1 MC, EEF1, ACE, ADUMB, CFF

1999 C27a2 c26b2 BYCBIM, BYCC

C28a1 c27b1 GHO

2000 C28a2, c28a3 c27b2, c27b3 POLYRATE interface, HQBMD, TMD, GAMESS-UK interface

2001 C28a4 c27b4

C29a1 c28b1 SASA

2002 C29a2 c28b2

C30a1 c29b0, c29b1 CMAP, GBMV, EMAP, SCC-DFTB

2003 C30a2, c30a2x c29b2 CHEQ, EXPAND

C31a1 c30b1 GBSW, GCMC, TREK, SGLD, TPS Q-Chem

2004 C31a2 c30b2 SCPISM, BNM, DTSC

C32a1 c31b1 IPS

2005 C32a2 c31b2

C33a1 c32b1 PBCUBES, APBS, GSBP, PIPF

2006 C33a2 c32b2 PHMD, RUSH, SQUANTM

C34a1 c33b1 TAMD, SMA, CORSOL, PROTO
2007 C34a2 c33b2 ZEROM

C35a1 c34b1 PNM, FACTS, CROSS, LOOKUP, RXNCONS, MSCALE

aFor features not described in text (italics), see documentation for details.
bClustering analysis in the CORREL module.
cNo longer supported.

Fi;x ¼ lim
Dx!0

Eðr1; r2; . . . ; xi � Dx=2; yi; zi; . . . ; rNÞ � Eðr1; r2; . . . ; xi þ Dx=2; yi; zi; . . . ; rNÞ
Dx

(24)

This test is clearly essential for the proper function of energy

minimization algorithms, the correct dynamical propagation in

MD simulations, and the accuracy and consistency of free

energy difference calculations. Running TEST FIRSt, prefera-

bly with several values of Dx, is particularly important when

new terms are added to the potential energy (e.g., RMSD

restraints, QM/MM interactions, PBEQ forces, etc.), to ensure

that the analytical energy gradient has been coded correctly.

In addition, TEST FIRSt allows the perturbation of the unit

cell within the CRYSTAL facility, as is required for the test-

ing of the virial computation. The analogous TEST SECOnd
command is used to test components of the Hessian compu-
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tation against the finite differences of the gradient. A variant

of this code is used to calculate the Hessian by finite differ-

ences when the analytic second derivatives are not available

(DIAG FINIte subcommand of VIBRan).

XI.C. CHARMM Distribution and Usage

The usage of the CHARMM program in the scientific commu-

nity can be measured in a number of ways. From 2002 to Au-

gust 2007, a total of 714 academic CHARMM licenses were

issued through Harvard University. The number of active

CHARMm (commercial version) licenses issued by Accelrys as

of early 2007 was �400; this included 20 government licenses,

and the rest were about evenly split between academic and com-

mercial institutions. (In many cases, a single institutional license

issued by Accelrys represents multiple end-user licenses.)

According to the Science Citation Index, as of January 2009 the

original (1983) CHARMM article had been cited~7800 times and

the two other articles describing the CHARMM force field38,62

an additional 3000 times. The total number has grown steadily

since the 1983 publication and now averages �700/year.

XI.D. The CHARMM Web Site and Documentation

Charmm.org

In 2003, the Web site http://www.charmm.org was created to

serve the community of CHARMM users and developers. This

Web site contains basic information, links to CHARMM devel-

opers’ homepages and resources, and the CHARMM forums. It

is an active Web site and is expected to remain an important

and up-to-date resource for CHARMM users and developers.

The most heavily used areas of the Web site are the forums,

where CHARMM-related discussions take place on a variety of

topics; moderators volunteer their time to assist novice users and

answer questions. There are currently more than 1100 registered

users who have posted more than 7000 messages in 30 regular

forums arranged in the following five major groups:

User Discussion and Questions—General CHARMM usage

forum.

CHARMM Interfaces—Discussions regarding the use of

CHARMM with other programs.

CHARMM Community—News, events, bug reports, and sug-

gestions.

CHARMM Information—General CHARMM information

and searchable documentation.

Restricted Discussion—Communication among developers.

CHARMM Documentation

The CHARMM documentation consists of a set of text files in the

‘‘doc’’ subdirectory of all CHARMM distributions that are also

available as HTML files on the CHARMM Web site. Commands

and features of all methods are documented, with descriptions of

syntax, options, and usage. Examples of their use are also pro-

vided in many specific cases, along with some theoretical back-

ground and implementation details. The CHARMM Developer

Guide (‘‘developer.doc’’) provides basic programming informa-

tion for CHARMM developers. It describes the program’s organi-

zation, coding standards and rules, documentation standards,

developer tools, preprocessor function and usage, compilation

procedures, and code submission protocols. All of the ‘‘.doc’’ text

files are written in the info format and can be read with the emacs

editor. These info document files can also be converted into

HTML files for web browsers with the ‘‘support/htmldoc/

doc2html.com’’ script. In addition, CHARMM lecture notes are

available on the charmm.org Web site. They are derived from a

course that was first given at Harvard by a group of CHARMM

developers in 1982 and that has been updated and presented at a

variety of locations over the years, primarily at the NIH. Notes

for roughly half the lectures are available. Readers who wish to

obtain practical experience with CHARMM are referred to A
Guide to Biomolecular Simulations by O. Becker and M. Kar-

plus,704 which is based on a course in Molecular Biophysics that

was given at Harvard for several years.

XII. Concluding Discussion

The primary purpose of the current article has been to review

the developments in the CHARMM program that have taken

place since the initial CHARMM publication.22 In addition, the

article has discussed some of the theory and principles on which

the method developments are based and many of the biomolecu-

lar research problems to which they have been applied. A review

of this length, which represents a body of work spanning more

than 25 years and encompassing contributions from hundreds of

individual scientists, would be impossible to summarize in a few

concluding paragraphs. However, there are several useful obser-

vations that can be made from an overview of the entire article.

These concluding observations all center on the role of complex-

ity in biomolecular simulation. Their consideration is relevant

not only to the development and use of CHARMM, but also to

biomolecular simulations more generally. It provides some guid-

ance for the investigator in applying CHARMM and other pro-

grams to problems of interest involving macromolecular sys-

tems, and suggests a framework for thinking about the problems,

themselves.

The first set of observations relates to the utility of simple

models. As computational speed continues to increase, the tend-

ency in biomolecular simulations is to use ever more complex

potential energy functions that describe systems in greater detail,

presumably with higher accuracy. Early extended-atom models

were followed by polar hydrogen models and then all-atom

models. More recently, polarizable models have been introduced,

and even QM (first-principle) energy functions are used in some

cases. For the representation of the aqueous environment around

biomolecules, the development of implicit solvation models has

followed a corresponding progression, which began with simple

distance-dependent dielectric functions. Surface-area based mod-

els were then developed, and these have led in turn to more

complicated representations of the solvation energy density. The

latter are now being partly superseded by more accurate models,

e.g., ones using an approximate or full PB electrostatics treat-

ment of the solvent. At the same time, there has been the devel-

opment of explicit representations of aqueous solvent, from van

der Waals spheres to more sophisticated multipoint charge and
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polarizable water models. As is demonstrated throughout the

course of this paper and as is evident from the published litera-

ture, the more detailed or complex models are important. What

is equally noteworthy, however, is that their existence does not

necessarily displace the simpler models, which often continue to

be used.

There are several reasons for this. The most obvious reason

is that simple models tend to be faster or more efficient than

complex ones. For a given set of computational resources, the

simpler model in most cases offers the possibility of addressing

a larger problem. An example is seen in MD simulations that

are carried out with QM potential energy functions, e.g., when

molecular mechanics potentials are not adequate. For large sys-

tems, full QM simulations are currently very limited in their

utility for obtaining meaningful statistics (accessible simulation

times are on the order of ps), because of the computational cost.

A more useful approach, which is employed, for example, in

studies of chemical reactions catalyzed by proteins, is based on

QM/MM methods. It provides a suitable compromise: the parts

of the system where the electronic structure changes of interest

occur are treated with quantum mechanics and the rest of system

is treated with (classical) molecular mechanics. At the other

extreme of the scale of molecular simulations, ‘‘coarse-graining’’

methods have been used increasingly in recent years. They intro-

duce simplifications that eliminate many or all of the individual

atoms and thereby run counter to the trend of ever-increasing

detail in simulation methodology. Coarse-graining enables simu-

lations of very large systems, such as multimeric protein com-

plexes, for which atomic level detail cannot be obtained experi-

mentally, or for which obtaining similar results with an atomistic

simulation requires much greater computational resources. An

example is the use of an elastic network model to perform a

normal mode calculation on the structure of a large multimeric

protein complex obtained from cryo-electron microscopy data.

There are also less obvious reasons why simple models con-

tinue to be used. One is that the approximations that are inherent

in the simpler model may be more appropriate, given the other

aspects of a calculation. A good example of this involves the

representation of solvent in structure prediction studies (e.g.,

MC studies or grid searches), in which there may be large dis-

placements of the solute (e.g., protein) of interest at each step in

the calculation. The use of explicit representations of solvent,

i.e., individual water molecules, which generally provide the

most detailed treatment of solvation effects, is, for practical pur-

poses, often incompatible with such methods, because it can

lead to bad solute–solvent contacts in a high fraction of the

sampled solute conformations. In contrast, the use of any

implicit solvation model—even the simplest surface-area based

ones—circumvents this problem, because the relaxation of the

aqueous environment around the solute is effectively instantane-

ous. Another reason for the use of simple models is that the data

they generate are often more easily interpreted. For example,

implicit solvation models introduce an effective free energy of

solvation through a mean field approximation, which represents

an average over the many degrees of freedom of the explicit sol-

vent water molecules that would otherwise be present in the cal-

culation. Another example is seen in the analysis of pairwise

atomic electrostatic interactions, which is generally more

straightforward with the use of a simple point-charge model

than it is with a full QM potential energy function. Overall, the

success of models at many different levels of complexity, as

described throughout this article, underscores the principle that

use of the simplest model capturing the essential features of the

system or process under study may optimize the investigator’s

chance of obtaining and interpreting the data necessary to

achieve useful insights.

A second set of observations in the paper concerns the com-

plexity of methods and the systems to which they can be

applied. Some of the methods described in the paper for applica-

tion to large biomolecular systems were formulated for smaller

systems. An example is a straightforward MD simulation, which

can be successfully ‘‘scaled’’ from small systems to large ones

essentially by increasing the number of atoms. It might be

tempting to hypothesize, from this type of observation, that if a

computational method is well formulated and has been validated

on small systems, it should be directly applicable to large sys-

tems as well. However, the majority of methods in CHARMM,

many of which are discussed in this article, have been specifi-

cally developed or modified for application to large, biologically

relevant molecules—i.e., they differ significantly from related

methods developed for small or homogeneous systems. For

example, energy-based search facilities for small molecules did

not have, nor did they require, the range of functionality pos-

sessed by the analogous facilities in CHARMM (e.g., the Monte

Carlo or grid search modules). The study of large systems has

also provided the main impetus for the development of more so-

phisticated path sampling techniques, solvation models, and free

energy methods.

A prime example of the inadequacy of ‘‘simple scaling’’ can

be found in the application of reaction path methods. If the sim-

ple methods for finding reaction pathways in small chemical

reactions were directly applicable to conformational changes in

proteins, most of the methods in Section VII would be unneces-

sary; but in fact, many reaction path methods that appear prom-

ising when tested on small systems (e.g., the alanine dipeptide)

fail in proteins or other large systems. This is due in part to the

fact that adequate sampling in large, inhomogeneous or asym-

metric systems is qualitatively more difficult to achieve than in

most small systems. The computational cost for a single step of

a given sampling method will, at best, grow linearly with the

number of atoms included, so that a given number of sampling

steps is substantially more costly when performed for a whole

protein, say, than a small drug-like molecule. Moreover, the size

of the conformational space of a molecule grows exponentially

with the number of degrees of freedom, so that far more steps

are required to sample the same fraction of conformations for

larger systems. In addition to the sampling problem, large con-

formational fluctuations (e.g., in protein folding), the effects of

bulk solvation, and the contribution of entropic changes are

much more important, in absolute energetic terms, in transition

paths of large systems than in most small molecule reactions. A

separate but related example is that small molecules have a

much more uniform solvent exposure than large globular mole-

cules, which have interior or buried regions. In the latter, the

most accurate implicit solvation models must take into account

both the direct interaction with the solvent and the dielectric
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effects, as a function of the solvent exposure of different regions

of the molecule, which can also vary with conformation. Finally,

even a ‘‘straightforward’’ classical MD simulation of a very

large system such as a solvated multimeric protein will likely

differ from that of a small or homogeneous system, if for no

other reason than the calculation must be parallelized for mean-

ingful statistics to be obtained in an acceptable length of (real)

time. As illustrated by these examples, a principal reason why

CHARMM has evolved into such a multifaceted program is that

large, complex systems are qualitatively ‘‘different,’’ and their

study requires its own set of methods.

A third set of observations involves the ‘‘simplicity’’ of the

CHARMM program itself and the important role it has had in

the program’s capacity to grow. This article makes clear that

one of the features that has been vital to the success of

CHARMM as a tool for molecular biophysics research is its

ability to incorporate new methods and functions. There are at

least two major factors in its ability to accomplish this. First,

although the program has evolved to become quite large and

complicated, its global organizational structure remains rela-

tively simple, in accord with Figure 1. One advantage of this

simplicity is that the structure is more easily understood, modi-

fied, and expanded upon. As mentioned in the Introduction,

CHARMM has been able to develop over the years without

requiring large-scale reorganization. Although the code has of

course undergone continual modifications and improvements, the

basic structure dates almost to its inception three decades ago.

The other factor, which is related, is that while CHARMM is to

some extent modular, it lacks the complex structural coding

hierarchies that characterize formally object-oriented programs.

This exacts a certain cost, e.g., with regard to data encapsula-

tion, but the benefit is transparency. Both of these types of

organizational simplicity have ‘‘lowered the barrier’’—not to

imply that it is negligible—to the introduction of new methods,

functions, and other modifications into the program over the

years. In this sense, the complexity of CHARMM as it stands

today, i.e., its diversity of function and its capacity to continue

to expand, can be said to have arisen in large part from the

simplicity of its design.

XIII. Epilogue: The History and Future of

CHARMM (Martin Karplus)

XIII.A. Historical Perspective on CHARMM

and Its Evolution

It is of interest to document why and how a program such as

CHARMM, which has involved the sustained efforts of a large

group of people for many years, came into existence. Initially,

the primary purpose of the program was to provide the group at

Harvard with a vehicle for doing research. It is to the credit of

the group of researchers who originally developed the program

that much of their early work has served as a foundation for the

subsequent growth of CHARMM into a rich research tool used

by the global scientific community. In an academic setting, like

that at Harvard, there is no permanent support staff to take on

the task of program development in an organized fashion. One

of the strengths of academic scientific research in America, in

contrast to that in much of Europe, is the independence of assist-

ant professors and the intellectual renewal that is brought about

by graduate students and postdoctoral fellows, who then move

on to their own positions. However, the lack of a permanent

staff causes some difficulties. I realized that in my research

group, the only way to preserve program developments by indi-

viduals working on a many different research projects with the

common thread of a focus on microscopic and mesoscopic sys-

tems (e.g., from small molecules in solution to large proteins)

was to have an all-encompassing program like CHARMM. The

price of having a single program is, of course, the complexity

that comes with size, but CHARMM is now a major research

tool for the scientific community in large part because of this di-

versity of function. The modularity of the program has made it

possible to adjust relatively easily to new demands and new pos-

sibilities. The CHARMM Development Project, which is admin-

istratively at Harvard University but involves all of the develop-

ers, is a continuing, collaborative effort to advance the

CHARMM program as a state-of-the-art tool for macromolecular

simulations. It is one of the great successes of the project that

many persons have been able to work together to develop the

program over a 30-year period (see Table 3) and that the struc-

ture is in place to continue the developments into the foreseeable

future.

CHARMM began with a program, now referred to as ‘‘Pre-

CHARMM,’’ which was developed by Bruce Gelin during his

years (1967–1976) as a graduate student in the Chemistry

Department at Harvard University.705 He had begun to do theo-

retical work in molecular quantum mechanics and started by

studying the application of the random-phase approximation to

two-electron problems. He was collaborating with Neal Ostlund

who was a postdoctoral fellow at Harvard at the time. Soon,

however, Gelin was drafted and, as a member of the Military

Police, ended up in a laboratory that was concerned with drug

use (LSD, etc.) in the US Army. This aroused his interest in

biology and when he returned to Harvard to finish his degree, he

wanted to change his area of research to deal with biological

problems. This fitted in well with my own interests. Attila Szabo

had just finished a statistical mechanical model of hemoglobin

cooperativity706 that was based on crystallographic studies and

their interpretation by Max Perutz. This work raised a number

of questions concerning the energetics of ligand binding in he-

moglobin and its coupling to protein structural changes involved

in the transition from the unliganded to the liganded state (the T

to R transition). The best approach to such a problem was to

have available a way of calculating the energy of the protein as

a function of the atomic positions. The specific objective of

Gelin’s research was to introduce the effect of ligand binding on

the heme group as a perturbation (undoming of the heme) and

to use energy minimization to determine the response of the pro-

tein. To do such a calculation on the available computers (an

IBM 7090 at Columbia University was our workhorse at the

time) required considerable courage and a program with which

one could construct the energy function for a protein as large as

a single hemoglobin chain (about 145 amino acid residues in

length). We did not have such a program and Gelin began to de-

velop software that would make it possible to start out with a

given amino acid sequence (e.g., that of the hemoglobin alpha
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chain) and a set of coordinates (e.g., those obtained from the X-

ray structure of deoxyhemoglobin) and to use this information to

calculate the energy of the system and its derivatives as a func-

tion of the coordinates. Developing such a program was a major

task, but Gelin had just the right combination of abilities to

carry it out. The result was Pre-CHARMM (it did not have a

name at that time). Although not trivial to use, the program was

applied to a variety of problems, including Gelin’s pioneering

study of aromatic ring flips in the bovine pancreatic trypsin in-

hibitor,23 as well as the hemoglobin study already mentioned,707

and Dave Case’s analysis on ligand escape after photodissocia-

tion in myoglobin.708 This work predated the MD simulation of

BPTI,4 which served as the basis for the application of such

simulation methods to a wide-range of problems in structural

biology.11–13

Gelin would have had a very difficult time constructing such

a program if there had not been prior work by other groups on

protein energy calculations. The two major inputs came from

Schneior Lifson’s group at the Weizmann Institute in Rehovot

and Harold Scheraga’s group at Cornell University. When I first

decided to take up calculational approaches to biology, I needed

a place where I could work with a good library and a congenial

group of people who knew more about what I wanted to do than

I did. I took a leave from Harvard University in the fall semester

of 1968 and went to join Shneior Lifson’s group at the Weiz-

mann Institute in Rehovot for 6 months. There I met Arieh War-

shel who came to Harvard as a postdoctoral fellow and brought

his CFF program.86 At Harvard, he developed a program for

what would now be called p-electron QM/MM calculations for

the ground and excited states of polyenes.244 His presence and

the availability of the program was an important resource for

Gelin, who was also aware of Michael Levitt’s pioneering pro-

tein energy calculations.709 For the choice of the energy function

to represent a protein and for many of the parameters used in

the original extended atom model (all H atoms were treated im-

plicitly), the work of Scheraga’s group, and in particular, the

studies of Gibson and Scheraga,710 were an invaluable resource.

It soon became evident that for an evergrowing group of

research uses, it would be very important to have a program that

was easier to use, adapt, and develop. This need led to the first

version of the present CHARMM program, by the authors of the

1983 article.22 Each one had a different background and differ-

ent ideas about how to develop the best program. As a result of

many discussions, some rather heated, the first version of the

program was born. When we searched for a name for the pro-

gram, we tried to find something for which GANDALF could be

an acronym; my daughter Reba was at the time very much

involved with the stories by Tolkien. This was unsuccessful; so,

Bob Bruccoleri, one of the original CHARMM developers, came

up with the name HARMM (HArvard Macromolecular Mechan-

ics), which might have served as a warning for the uninitiated

user but seemed inappropriate to me. The addition of ‘C’ for

Chemistry led to the present name.

Because of the growing importance of macromolecular simu-

lations in drug design by pharmaceutical companies, an entrepre-

neurial lawyer, Jeff Wales and his neighbor, Andy Ferrara, came

to me in 1985 with the idea of establishing a company that was

based on distributing the CHARMM program to industry. This

seemed a good idea, particularly because the original concept

was that Harvard would make the CHARMM program available

and the company, initially called Polygen, would transform our

academic tool into a commercial program. Only part of the plan

came to fruition: i.e., what has been distributed over the years

by the various incarnations of the company (Polygen, Molecular

Simulations, Inc., and now Accelrys, Inc.) has been the Harvard

program, with few changes other than the introduction of license

keys. However, the graphical programs QUANTA and INSIGHT

have been of considerable utility as front-ends to CHARMM,

particularly for inexperienced users. Recently, Accelrys has

begun to contribute to CHARMm and CHARMM in the same

way as other ‘‘developers.’’ An example is the GB-based

implicit solvation model for membranes.136 Also, Accelrys has

developed a number of scripts, particularly for side chain and

loop predictions (see www.accelrys.com for details).

One major concern I had in working out the arrangements

with Polygen was that the academic distribution of CHARMM

remain under Harvard’s (my) control. This was important to me

because I wanted to keep the research aspect of CHARMM clear

of interference by commercial objectives and to make certain

that the program could be distributed at a reasonable price for

academic and other (e.g., government) not-for-profit institutions.

Toward the latter goal, the criterion I decided on was that the

price should be as low as possible, but high enough so that peo-

ple would request the CHARMM program only if they had a

genuine intention of using it, rather than merely wanting to add

another program to their collection. To distinguish the academic

and commercial versions, which I hoped would be significantly

different, as mentioned earlier, the slightly different names—

CHARMM (academic) and CHARMm (commercial)—were

agreed upon.

At about this time, I met Rod Hubbard who was very

impressed with the possibilities of macromolecular simulations

and had the idea of developing a graphics program to illustrate

the results. I invited him to come to Harvard, where he devel-

oped a program, called HYDRA for its seven modules or

‘‘heads.’’ It was an exciting project. Every day, Hubbard would

show on the computer screen what he had developed overnight,

and group members would try and use it, find the problems in

the present version, and suggest new functionalities that would

be helpful in research. In this way, mainly through Hubbard’s

outstanding ability at graphical programming, a very useful

graphical program was developed in record time. It is unfortu-

nate that this paradigm is not followed more generally to avoid

programs that please the developers but not the prospective

users. The graphical interface program QUANTA, which was

developed from HYDRA by Rod Hubbard and people at Poly-

gen, has remained an important tool for users of CHARMM

until now.

CHARMM has ‘‘evolved’’ for more than 30 years, and the

community of CHARMM developers is now sufficiently dis-

persed that there is an annual meeting to discuss recent additions

and developments. It begins with 1 or 2 days during which the

developers present recent work. (There are 30 or more presenta-

tions.) This is followed by a half-day session during which the

content of the next developmental version of CHARMM is dis-

cussed, and the parts of the existing developmental version that
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will be added to the release version are selected. Usually, new

developmental and release versions are generated each year in

August, with an update incorporating bug fixes released in

February. The critical task of integrating the various developer

contributions while resolving conflicts and ensuring standard

coding practices is led by Youngdo Won, the CHARMM man-

ager (see also Section XI), who assumes the ultimate responsi-

bility for preparing the new versions.

One contribution of CHARMM, in addition to its function as

a simulation program, is that a number of other programs for

macromolecular simulations are direct, though not necessarily

planned, descendants of CHARMM; for example, Paul Weiner

brought pre-CHARMM to Peter Kollman’s group and developed

the first version of AMBER from it. Similarly, Wilfred van Gun-

steren was a postdoc in my group, took pre-CHARMM with him

and used it as a basis for GROMOS. These programs, and many

others that are less-widely available but had their origins in

CHARMM, are now independently developed and each one has

certain features that make it unique. Finally, X-PLOR was a

planned derivative of CHARMM. It began while Axel Brünger

was at Harvard, when the utility of MD in a simulated annealing

mode for X-ray structure refinement and NMR structure determi-

nation became clear.711 The great success of X-PLOR, and now

CNS and CNX, has been due in large part to Axel Brünger, their

primary developer.

XIII.B. Perspectives for the Future

There are two components to the future of CHARMM, one

administrative and the other scientific. For both, the future looks

bright. On the administrative side, a plan is in place for an exec-

utive committee (Bernard R. Brooks, Charles L. Brooks III, and

Martin Karplus) to formally take charge of the program and its

evolution at the appropriate time. To achieve this, an agreement

between Harvard, as the copyright holder of the program, and

two other institutions (NIH for Bernard Brooks and University

of Michigan for Charles Brooks) has been codified. In this way,

it is expected that the development and distribution of the

CHARMM program will continue as it has in the past.

On the scientific side, it is appropriate to begin by quoting from

the Concluding Discussion of the original CHARMM article22:

‘‘Our work focuses on the chemistry of condensed phases,

with particular emphasis on the study of macromolecular sys-

tems found in biology. The program has been employed in proj-

ects ranging from the exploration of macromolecular solvation

to protein–DNA interactions and many associated studies of con-

stituent small-molecule properties. The very large size and lack

of symmetry of these systems presents us with challenging com-

putational requirements. The methods developed to deal with

these demands have application in other areas of theoretical

(e.g., fluid and polymer mechanics) and experimental (e.g., crys-

tallography, structure refinement, NMR, and other spectroscopy

interpretation) study. By simulating biological macromolecules,

we hope to improve our understanding of their properties and of

the forces acting within them. Such knowledge will in turn help

to elucidate their function and the mechanisms involved in mac-

romolecular structure and assembly, binding site recognition,

and specificity. Enzymes are among the most efficient and versa-

tile catalysts known. The chemical and physical understanding

of proteins gained through simulation will be directly applicable

to understanding these unique catalysts. Combined molecular or-

bital and empirical energy function calculations are planned to

examine the detailed interaction of molecular mechanics with

electronic structure. Nucleic acids and their transformations,

which play an essential role in genetics, are being studied.’’

Much of what was written 25 years ago is still valid today

and most of the research listed as ‘‘in preparation’’ in the 1983

article has been completed, published, and incorporated into the

CHARMM program. One important example is the development

and widespread application of QM/MM methodology.

Given the great and continuing increase in computer power

(the first petaflop machine has recently been reported), simula-

tions will most likely evolve in several ways. As I describe

below, the extensions to larger systems and longer simulation

times is one direction. In addition, the fact that multiple simula-

tions can be done as a routine matter makes possible the deter-

mination of statistical errors in the results. In reducing system-

atic errors, the use of more accurate and complex force fields

(e.g., polarization, QM/MM) will likely play a role. Also, faster

computations will aid in the development of improved models

of biological phenomena, because shorter turnaround times for

nanosecond simulations will permit the testing of more ideas.

Moreover, the possibility of more accurate calculations, includ-

ing free energy simulations, using generalized force fields should

be instrumental in making computer-aided ligand design a

reality.

An exciting recent development in MD is that the simulation

time scales becoming available with modern computers (100 ns

to ls or even longer243) are making it possible to directly simu-

late biologically important events. This is analogous, in an

inverse sense, to the fact that while experiments on the ps time

scale were an important development, it was only when the time

resolution was extended to femtoseconds that the actual events

involved in chemical reactions could be observed.712,713 A strik-

ing recent result is that, by running multiple simulations of 10

ns duration, the visualization of water molecules migrating

through a model of the aquaporin channel has been achieved

(see Fig. 9).714,715 Another example is the observation in MD

simulations of the formation of detergent micelles681,682 and

phospholipid bilayers.716 That certain of these simulations were

done with other programs (e.g., GROMACS21 and NAMD693)

shows how much the field has matured. It is becoming ever

more evident that cells are made up not of isolated proteins, but

of protein complexes, which have the essential functional roles.

The structures of such large multisubunit complexes are being

determined at an increasing rate. In all of them (they are almost

all ‘‘molecular machines’’) conformational change is directly

involved in function. One example where such simulations have

helped to elucidate the mechanism, in this case the synthesis of

ATP, is the use of free energy and targeted MD simulations of

the enzyme ATP synthase.124,717 Another complex that is now

being studied by molecular and normal mode dynamics is the

ribosome, whose structure was determined recently. The simula-

tion of such large systems for the time required to obtain mean-

ingful results is now possible and broadens the role of simula-

tion programs like CHARMM in molecular biophysics.
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The next step is the evolution of MD simulations from mo-

lecular and supramolecular systems to the cellular scale. Studies

of the formation of such assemblages will be more demanding.

The simulation of more complex cellular activities, such as syn-

aptic transmission718 and the dismantling of the nuclear mem-

brane on cell division by the motor protein cytoplasmic

dynein719 are two examples of interest. Much of this work will

build on the detailed knowledge of the structure and dynamics

of the channels, enzymes and other cellular components. Global

simulations are likely to be initiated with less detailed models.

A recent example is provided by the use of simplified normal

mode calculations for the cowpea chlorotic mottle virus as a

way of interpreting low resolution (28 Å) cryoelectron micro-

scope data indicating the swelling of this virus at low pH,720 or

dynamics of processes involved in ribosomal translocation.721

However, the ultimate descriptions, which will necessarily

include such details as the possible effects of mechanical stress

in a contracting neuromuscular synapse on its channels and other

components, will require atomistic simulations.

Given the continuing improvements in MD simulations,

another development will be their routine use by experimental-

ists as a tool, like any other, for improving the interpretation

and understanding of the data. This has, of course, been true for

many years as part of high-resolution structure determina-

tions301,711 and it is now beginning to occur in the interpretation

of the structural results by the scientists who obtained them.722

When MD is a routine part of structural biology, it will become

clearer what refinements and extensions of the methodology are

most needed to improve the results and to perfect the construc-

tive interplay between the simulations and experiment. The ex-

posure of limitations by such applications will, in turn, provide

challenges for the simulation experts, and catalyze new develop-

ments in the field. I hope that before long such an interplay

between experiments and simulations will be an integral part of

molecular biology, as it is now in chemistry.
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