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Abstract: Version 9 of the Amber simulation programs includes a new semi-empirical hybrid QM/MM functional-
ity. This includes support for implicit solvent (generalized Born) and for periodic explicit solvent simulations using
a newly developed QM/MM implementation of the particle mesh Ewald (PME) method. The code provides suffi-
ciently accurate gradients to run constant energy QM/MM MD simulations for many nanoseconds. The link atom
approach used for treating the QM/MM boundary shows improved performance, and the user interface has been
rewritten to bring the format into line with classical MD simulations. Support is provided for the PM3, PDDG/PM3,
PM3CARBI1, AM1, MNDO, and PDDG/MNDO semi-empirical Hamiltonians as well as the self-consistent charge
density functional tight binding (SCC-DFTB) method. Performance has been improved to the point where using
QM/MM, for a QM system of 71 atoms within an explicitly solvated protein using periodic boundaries and PME
requires less than twice the cpu time of the corresponding classical simulation.

© 2007 Wiley Periodicals, Inc.

J Comput Chem 29: 1019-1031, 2008

Key words: molecular dynamics; Amber; QM/MM; quantum mechanics; MD; PME; particle mesh Ewald; Ewald;

molecular mechanics

Introduction

The idea of combining quantum mechanical (QM) and molecu-
lar mechanical (MM) potentials into a hybrid QM/MM potential
was first realized by Warshel and Levitt (1976) in their paper on
the catalytic mechanism of lysozyme.! Typically in a QM/MM
approach the parts of the protein and substrate that are directly
involved in the enzyme reaction are calculated using a QM
potential function, and the remaining atoms in the system use a
classical MM potential. This avoids a major deficiency with
classical MM calculations, where chemical bonds cannot be
made or broken during a simulation. The coupling of a QM and
MM potential allows just the reaction center to be studied quan-
tum mechanically while keeping the calculation complexity low
by using a more approximate MM potential elsewhere. This par-
titioning of the system allows calculations on systems signifi-
cantly larger than would have been possible with a pure QM
approach, and at the same time enables calculations such as
reactions to be studied for which classical MM potentials are
not appropriate. A number of different hybrid potentials have
been developed with QM methods ranging from empirical va-
lence bond approaches®* to semi-empirical molecular orbital.*”
density functional® and ab initio methods. Such approaches have
been used in the study of a wide range of problems including
studying solvation effects on reactions in proteins and in solu-
tion, and of solvent-induced spectral shifts.>”*3

Interest in hybrid QM/MM potentials has lead to a number of
popular implementations, including CHARMM,” Dynamo,'”
BOSS,'" and Amber,'? that are designed for biomolecular simu-
lations. A QM/MM potential for running MD was first intro-
duced into the Amber software package by Singh and Kollman'?
in 1986, which used a modified version of Gaussian 80.'*'
Amber v4.0 was later used as the basis for the program
ROAR,'® which provided semi-empirical QM/MM support via a
modified version of MOPAC.!” With version 8 of Amber, semi-
empirical support was provided, on a functionally limited basis
via an interface to the program DivCon Lite.'8

Here we discuss the implementation of QM/MM in version 9
of Amber. This new implementation is tightly integrated within
the regular sander MD program and provides seamless support for
QM/MM calculations without the need for any extra configuration
files, special executables or modified scripts. We give details of
tests of energy and gradient accuracy, a new link atom approach,
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how we have modified the classical Particle Mesh Ewald (PME)'®
approach for treating long range electrostatics to make it compati-
ble with QM/MM calculations, and new functionality such as sup-
port for the generalized Born implicit solvation model.>**! We dis-
cuss the performance of the new code with comparison to other
commonly used MD packages such as CHARMM and Dynamo.

Capabilities of the Code

Our primary motivation for rewriting the QM/MM code in Amber
was to make its use as orthogonal as possible to other choices made
in classical simulations, so that choosing to have a QM active site
places as few restrictions as possible on what else can be done in the
simulation. This implies that the accuracy of the energy and gradients
(and hence energy conservation in NVE simulations) should be com-
parable with that achieved for empirical potentials, and commonly
used options for MM simulations (such as periodic boundary condi-
tions with PME,' or generalized Born implicit** solvent models)
should be supported in the QM/MM code. Since biochemical simula-
tions require extensive exploration of configuration space, we have
limited the code (for now) to semiempirical and DFTB methods that
are fast enough to be used for simulations of tens or hundreds of
nanoseconds that are commonly used for MM simulations. The capa-
bilities of the new QM/MM implementation include the following:

1. Support for minimization and molecular dynamics with either
pure QM or QM/MM energy and gradient evaluation using
either the PM3,** PDDG/PM3,”> PM3CARB1,”* AM1,”’
MNDO,zx‘29 or PDDG/MNDO25 semi-empirical Hamiltonians
as well as support for the density functional theory-based-
tight- binding (DFTB) Hamiltonian®>*' and its self-consist-
ent-charge version, SCC-DFTB.*** Details of the DFTB
implementation are discussed elsewhere.*

2. The ability to apply the standard SHAKE®® algorithm of
sander to QM as well as MM bonds involving hydrogen
atoms. This allows stable QM/MM simulations, where bonds
involving hydrogen are not expected to be broken, to be run
using a 2 fs time step.

3. Support for gas phase, solvent cap and periodic (PME®®)
QM/MM simulations.

4. Support for all of the generalized Born solvation models® that
are present in sander, using the Born radii developed for classical
simulations and dynamically calculated Mulliken charges.

5. Application of restraints on the QM or MM regions using any
of the methods currently implemented in sander allowing for
targeted MD, Nudged Elastic Band, and umbrella sampling.

6. Support for QM/MM Replica Exchange simulations.

7. Support for Path Integral QM/MM MD simulations.

8. Support for QM/MM based thermodynamic integration calcu-
lations.

9. Simulation in parallel over either shared memory or distrib-
uted memory computer clusters using the message passing
interface (MPI).

The Hybrid QM/MM Potential

The system is partitioned into two regions, a QM region consist-
ing of the atoms defined by either the gmmask or igmatoms key-
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words, and an MM region consisting of all remaining atoms. For
a typical protein simulation in explicit solvent, the number of
MM atoms is much greater than the number of QM atoms. Ei-
ther region can contain zero atoms, giving either a pure QM
simulation or a standard classical simulation. The effective Ham-
iltonian, H.gy, operates on the system’s wavefunction ¥, and is
dependent on the electron positions, 7, the positions of the MM
nuclei, 7,,, and the QM nuclei, 7

I:]eff‘"ll(fm Tqs fm) = Eeff(fm Tqs fm)lP(mew fm) (1

The effective Hamiltonian consists of three components—one
for the QM region, one for the MM region and a term that
describes the interaction of the QM and MM:

Her = ﬂQM + Hym +I'7QM/MM

2
Eett = Eqm + Emm + Eqm/mm

The MM term can be removed from the integral since it is
independent of the distribution of the electrons:

Eert = <\P|ﬁQM +ﬁQM/MM|lP> + Evmm 3)

The interaction term I-iQM/MM represents the interaction of
the MM point charges with the electron cloud of the QM atoms
and the interaction between the MM point charges and the QM
atomic cores; here a “core” represents the nuclear charge plus
any core electrons that are not treated explicitly. For the case
where there are no covalent bonds between the QM and MM
regions, this term is the sum of an electrostatic term and a Len-
nard-Jones (VDW) term:

[:IQM/MM - = Z Z qml’;eleclron (Fm fm) + Z Z Zqul’zcore (fqv fm)
e m g m
A B
SEY (P @
mq

T'mq T'mq

where e refers to electrons, m to MM atoms and ¢ to the QM
cores (nuclei and core electrons). ¢,, and z, are the charges on
MM atom m and core of the QM atom ¢, 7 is the coordinate
Vector, 7, the distance between atoms m and ¢ and A and B are
Lennard—Jones interaction parameters. There has been discussion
concerning whether or not the Lennard—Jones (LJ) coefficients
should be explicitly parameterized for QM-MM interactions.>”*®
Amber allows the user to specify which parameters will be used,
but does not yet have a default set of modified L] parameters.
The operators " specify the interaction between the QM elec-
trons and MM point charges. For semiempirical Hamiltonians
we follow the MOPAC programs, and use the full electrostatic
interactions between the QM charge density (expanded in a
STO-6G minimal basis set) and the point charges on the MM
atoms. For DFTB the QM/MM interactions are represented by a
point-charge Coulomb interaction between the Mulliken charges
and MM partial charges.
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Once an effective Hamiltonian for the system has been
defined the wavefunction and energy can be evaluated by mini-
mizing E.¢ in eq. (3) with respect to the molecular orbital coef-
ficients of the ground state wavefunction using a self-consistent
(SCF) procedure to solve a restricted Hartree—Fock approxima-
tion of the electronic wave function of the system at each step.

QM/MM Long Range Electrostatics

Short-range electrostatics (for atoms within a cutoff) are straight-
forward to implement using eq. (4). However, it is well under-
stood that long range electrostatic interactions and solvent
effects play an important role in the behavior of solvated sys-
tems. Long range interactions of periodic classical systems in
sander are traditionally included via the application of a Particle
Mesh Ewald (PME) method."® This is an adaptation of the regu-
lar Ewald sum method® for calculating the full electrostatic
energy of a unit cell in a macroscopic lattice of repeating
images. The PME method is fast since the reciprocal space
Ewald sums are B-spline interpolated onto a grid and the convo-
lutions necessary to calculate the sums are evaluated in Fourier
space using fast Fourier transforms.

Recently Nam et al. have described an implementation of the
Ewald summation method*® compatible with semi-empirical QM
methods, and Laino et al. have published a similar implementa-
tion for DFTB based on the multigrid approach.*' This Ewald
QM/MM method provides a correct implementation of long-range
electrostatics in periodic systems, but it is very slow for any size-
able simulation system. Here we describe how the faster PME al-
ternative can be adapted for use with the QM/MM model.

If we denote the electrostatic energy of a periodic QM/MM
system as ET°M04 then

EPeriodic _ EPeriodic [,0, p] + EPeriodic [p7 q] 4 EPeriodic [q7 q] (5)

where ¢ represents the partial charges of the MM atoms, p repre-
sents the electron density and core charges of the quantum region
and the [p,g] notation represents the interaction of p with g.

To use existing nonperiodic treatments of QM/MM systems,
we follow Nam et al. to define the complete periodic energy as
a sum of the nonperiodic energy (as determined by conventional
cutoff techniques), ERS, plus a periodic boundary correction
term, AETBC,

EPeriodic — ERS + AEPBC (6)

Each of the terms of eq. (5) can be redefined in this way. The
key approximation is that the full charge density, p, in AETBC
[p,p] and AEF BC[p,q], can be approximated by interactions with
Mulliken charges, denoted Q, which are used as surrogates for
the electron densities of the wave functions on the QM atoms,

AE"™C[p, p] = E™™%[p, p] — E¥®[p, p]

odic @)
~ EFe[0, 0] - E¥(Q, 0]

= AE"C(0. Q]
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where,

®)

/

Perlodlc Q o
Ertg.0] =3 Z
ji n=0

in which the first sum is over all atom pairs in the unit cell and
the second sum is over all unit cell translations. The prime in
the second sum is to indicate that the i = j term is not included
when n = 0. The Ewald method splits the infinite sum into three
convergent sums:

Periodi S e
o 0)= 53> 500,
i T k0
K? -
X exp(—m) cos (k - )
L Qv o ofe
+3 ZZQQ,e ”‘"” +ZQ2 SO
i j# v

where V is the volume of the unit cell, k are the reciprocal unit
cell vectors, erfc is the complimentary error function, and x is a
parameter, which is chosen such that the erfc function goes to
zero within a preferred distance. The three terms are called the
reciprocal sum, the direct sum, and the self term, E™P[0,0),
EY™0,01, and E*'[Q,0], respectively,

AEPBC[Q, Q] — Erecip [Q7 Q] + Edirect[Q7 Q] + Eself[Q, Q]
- E®[0,0]
_ Erecip [Q Q] + Eself[Q7 Q}
1M oM rf 1 Qv am
233 00 ) ZZQ,Q,
i A T i A
= E**[0,0] + E'[0, 0
1 Qu Qu rf l
N 72 Z Qi0) : r’jrj
i j# !

_ frecip [Q’ Q] ESelt [Q7 Q} AEZ]?[S“ [Qa Q] (10)

where erf is the error function.

An equivalent treatment is also used for AET®C[Q,q]; since
an atom cannot be both a QM and a MM atom there is no self
term; this simplifies to,

m,,

AE™PC(0, q] = E*?[0, 4] +ZQIZ 9 (1)

i

Introducing the AEYEC Mulliken charge approximation allows us

to write the periodic energy from eq. (5) as,
EPeriodic ~ ERS [,07 P} + AEPBC[Q, Q]
+E%[p,q] + AE™[0, 4] (12)
+ Erecip [%q} + Edirect [q7q} + Eself [q’q]
The first three terms are treated in the same way as that

described by Nam et al.** in which the second term is evaluated
using a regular Ewald method. The fourth and fifth terms are the
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same as Nam et al.** except that the reciprocal-space K-sum is
replaced with the PME method which closely parallels the regu-
lar Ewald method but shows significantly improved performance
for macromolecular systems. In particular the fourth term has
the form,

AE™PC(Q, q] = E*™U[0, q] — E*®[Q, q]
QM MM o
— Z 0; Z q; [\I/Perlodlc ’—) \IJRS (| ‘)]
i J
QM MM
=30 gAY, )] (13)
i J
where WFeri°d¢ jg the full pair potential for all pairs including

periodic images to infinity, and WPR® the full Culomb pair poten-
tial within a cutoff. Applying the Ewald method yields the fol-
lowing correction potential,

AWPEC(R,; ;) = W™ (7, 7)) +
\Preclp( ) + ATSﬁSff |”i/|

\delrect \{jRS Fi
() =)

where WP (7,7;) is the reciprocal part of the Ewald pair poten-
tial due to all MM atoms interacting with QM atoms represented
as Mulliken point charges, and A‘Pfﬁgﬁ (Iryl) is the correction to
the cutoff based real-space potential and has the form,
erf (x|7j|) /|7j| by analogy to the treatment in eq. (10). The re-
ciprocal term of eq. (14) is conveniently calculated with a regu-
lar Ewald reciprocal sum but, since there are a large number of
MM atoms and the sum scales as the number of MM atoms
times the number of QM atoms, the sum becomes computation-
ally expensive. Writing the Ewald sum in the following way
with Epgh (¢*) representing the total reciprocal sum energy of
all atoms calculated with PME and all atoms represented by
point charges, where ¢* represents a combination of the static
MM point charges and the QM Mulliken charges, we can isolate
the term in question:

allalomi allatoms

Enitla’ z DI (¥R (i) )
lQ
ZEZQ[ZQJ( b (o7 )+Zglzq,( Pk (7.7))
i=1 j=1

MM MM

22%2 g (¥ () (15)

and rearranging for the terms we need,

QM MM

ZQiZ%(\PE\CAIE Fis 7))

=1 j=1

Zqzz% I’el\c/llE Fis T, ))

QM
= Epub(q" ZQIZQ, (Phik (71,7))  (16)

Using the relationship in (16), the energies and forces from
the reciprocal sums on the left can be determined from the dif-
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ference of the results of a PME reciprocal sum of all the charges
and a PME reciprocal sum of just the Mulliken charges. Thus
we can rewrite eq. (12) as,

EPeriedic ~ RS [ p] + ERS[p, q] + Egen[0. O] + AEPES [0, 0]
+ AEFESH(0. q] + (Epitla’] — Epnl0, Q]) + Evnectlq, g
(17)

The calculation is organized so that the first four terms of eq.
(17) come from the QM part of the calculation where the first
term is the direct space QM-QM interaction, the second term the
interaction of QM atoms with MM atoms that are within the cut-
off distance of any QM atom, and the third and fourth terms are
the interaction of direct space QM atoms, represented by a Mul-
liken charge approximation, with the periodic QM images. Since
the number of QM atoms is generally small compared with the
number of MM atoms, the most efficient method for the evalua-
tion of terms three and four is a regular Ewald approach. The
fifth and sixth terms are calculated by the two PME calculations
described earlier after the Mulliken charges have been deter-
mined and the final term is the classical direct space calculation
over static MM point charges. Figure 1 shows a flow chart of
the implementation of this method.

Fock Matrix Corrections

The wave function is determined by a self-consistent field
method to minimize the total energy as a set of molecular orbital
coefficients. This minimization procedure requires the diagonal-
ization of a Fock matrix.

9E|p]
6,0 nw

F;w = (18)

is an element of the Fock matrix, and p,, is an element of the
single particle density matrix.

The Fock matrix can be split into “real space” and “cor-
rection” terms in the same way as the treatment of the potential
energy above,

Fenodic = FRS 4 AFPSC (19)
The real-space part of the Fock matrix is constructed as in the
nonperiodic case in which the MM atoms within the cutoff con-
tribute as static partial charges. The periodic-boundary correction
has the form,

e (agneig 01 - 5 ™l0.g) )
W

Both derivatives will be nonzero only when u = v because the
Mulliken charges, Q, depend only on p,,, and therefore will
only add corrections to the diagonal elements of the Fock ma-
trix.

Since the definition of Mulliken charge in NDDO-based
semiempirical methods is,

Q=% pu @1)

Hei
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Figure 1. Flowchart illustrating the steps involved in the QM/MM
PME calculation process for a single molecular dynamics step.

the derivative of the last line of eq. (13) with respect to p,, is,

aAE;Zi£Q7 q_ iff e () 2

which is simply the electrostatic potential at the position of QM
atom i due to all MM charges and their images that are not
within the direct space cutoff. Equation (22) is not a function of
the Mulliken charges so the AFY2C[Q,g] correction term can be
calculated once before the SCF procedure and simply added to
the one electron matrix. In practice the reciprocal part of this
term is calculated using a PME method where the charges on
the quantum atoms are zeroed, while the cutoff correction term
is calculated by Y™ g;(erf (ic|ry|) /|Fy|) derived from the sec-
ond term of eq. (11). In the case of the AF PBC [0,0] correction
term, the dependence on Q does not vanish when taking the de-
rivative with respect to p,,, so this correction term must be
evaluated on every step of the SCF procedure. If there are rela-
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tively few quantum atoms compared with the number of MM
atoms, a regular Ewald method is the most efficient for this part
of the calculation. Here we use an Ewald procedure that calcu-
lates the electrostatic potential at each QM atom position due to
all the QM images. This consists of a reciprocal calculation and
a cutoff correction term corresponding to terms two and three of
the third line of eq. (10).

Once the SCF procedure converges to within the chosen cri-
teria the energy is calculated as described earlier and the forces
are simply the derivative of the energy with respect to position.
We can write the force along a coordinate on a single atom as,

dE
fo = (ch,) (23)

where E depends on the atom positions and has the added de-
pendence on the Mulliken charges for the periodic corrections.
Since Mulliken charges are computed from diagonal elements of
the Fock matrix, they depend only on the orbital coefficients.
The total energy can then be considered as a function of the
atomic positions, the orbital coefficients, and the Lagrange mul-
tipliers used to maintain the orthonormality constraints.***
Because the SCF equations minimize the energy as a function of
the orbital coefficients, we can compute the gradient without
needing to know how the orbital coefficients (or the Mulliken
charges) change with geometry. Gradients are calculated in the
usual way for a closed-shell Hartree—Fock wavefunction (details
are in section 30.5 of ref. 42 and eq. (22) of ref. 43), with the
simplification that the overlap matrix is independent of geometry
for these NDO models.

QM/MM Generalized Born

Support for QM/MM implicit solvent simulations is provided by
a generalized-born surface-area (GBSA) approach. Our imple-
mentation is based on the QM/MM compatible GBSA approach
developed by Pellegrini and Field.** The QM energy, Eqm, of
an implicitly solvated closed shell molecule being treated with a
semiempirical QM method of a type supported by Amber is
given by

EQM = %ZPMV (H;tv + F,uv) + Enuc + Gpol + GSA (24)
v
where P, H,,, and F,, are the density, one-electron and Fock
matrices, respectively. u and v refer to the basis functions used
to expand the molecular orbitals, E,,. is the nuclear repulsion
energy between QM nuclei and G, and Gga are the polariza-
tion and surface area energies>!

N
Gsa = Z giA; (25a)
=1

1/1 1\ qg;
Gt = —= [~ —— i (25b)
P (Si 80) ; ,Z:;fij (r4)

where N is the total number of atoms, A; is the solvent accessi-
ble surface of atom i, o; is an empirical solvation parameter, &;
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and ¢y are the solute and solvent dielectric constants respec-
tively, g; is the charge on atom i, and f;; is a function dependent
on the distance, Tijs between atoms i and ;. i does not have a
unique functional form. In our implementation we use the form
proposed by Still et al.!

ri2
fi(ry) = \/ ri? + 2% exp <f 4;_“_) (26)
1%

where «; is the effective Born radius of atom i. The calculation
of accurate Born radii is crucial to the effectiveness of the
GBSA method. Amber contains a number of Born radii parame-
ter sets that have been developed for classical simulations. All
of these approaches are supported in our QM/MM implementa-
tion. While some have noted that QM GBSA results can be
improved by specifically optimizing the radii for each QM Ham-
iltonian** we do not provide any QM optimized radii sets with
Amber, however since these are defined during the construction
of the input file containing the molecule’s topology it is a simple
matter for the user to substitute the QM atom radii with radii of
their choice.

Utilizing eq. (25) for a QM calculation requires the determi-
nation of effective atomic charges to be used in place of ¢; and
q; which for MM calculations would typically be fixed partial
charges consistent with the force field being used. The simplest
approach is to use a Mulliken population analysis in the same
way as was employed for the PME calculations described above
eq. (21). Since for an accurate description of the solvation effect
on the electron density of the QM region and to be able to dif-
ferentiate eq. (25b) with respect to just r;; it is necessary to mod-
ify the vacuum Fock matrix in a fashion equivalent to that
described earlier. This is achieved by adding terms of the fol-
lowing form to the diagonal elements of the vacuum Fock ma-
trix

11\ R0
AF/W: _—— = UuE€i 27
& & jeQm /i

Minimization of E.g in eq. (3) with the additional term in eq.
(27) proceeds in exactly the same way as the vacuum case using
an iterative SCF approach. This yields a density matrix that is
self consistent with having been perturbed by the GB solvent
potential. The GB contributions to the derivatives can then be
calculated in exactly the same way as would be done for a clas-
sical simulation using the Mulliken charges from the self-con-
sistent density matrix in place of classical partial charges for the
QM atoms.

Extending the earlier description to a QM/MM system is con-
ceptually simple adding two extra terms to eq. (2) to give

Eert = Eqm + Evm + Eqvymm + Gpol + Gsa (28)

Since the surface area term Ggja is independent of whether the
atom is a QM or MM atom so it can be evaluated independently
of the rest of the calculation. The polarization term is a function
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of the QM charges but is pairwise additive and so can be rewrit-
ten as

11 1 00 | v - Q)
Gpol—z(si—ao)<z SEDID I

icQMjeQM JU icQM jeMM /i

+3 3 "Jf”) (29)

iEMM jeMM /i

The second term in brackets on the right hand side of the earlier
equation contains the interaction between QM atoms described
by Mulliken charges and MM atoms described by classical par-
tial charges. This expression means that the expression for modi-
fying the Fock matrix terms to account for the polarization
energy, eq. (28), must be extended to include the sum over all
atoms, both QM and MM. Since the MM charges remain fixed
during the SCF procedure so the contributions to the Fock ma-
trix due to the MM atoms can be evaluated once before entering
the SCF procedure while the contributions due to the QM atoms
must be reevaluated on each step of the SCF.

The QM/MM Boundary

The way in which nonbonded interactions between the QM and
MM parts of a system are handled in sander v9’s hybrid QM/
MM potential was described in the previous section. This, how-
ever, only deals with situations where there are no covalent
bonds between the QM and MM regions. In many simulations it
is necessary to have the QM/MM boundary cut covalent bonds.
In this situation a number of additional approximations have to
be made. Many methods have been proposed for dealing with
this problem, that generally fall into three classes. These classes
include capping potential, or pseudo bond methods** which use
an element of fictitious type to “cap” each bond between the
QM and MM regions; hybrid-orbital approaches, which employ
either hybrid or localised frozen orbitals on the QM atom of the
QM-MM covalent pair***” and the link atom approach.

In sander v9, we use the link atom approach. First introduced
by Singh and Kollman'® this method has found widespread use
in QM/MM calculations with a number of variations being
developed, including those by Bersuker et al.*® and Morokuma
and Maseras.* In this approach a link atom, which is typically,
but not always, a hydrogen, is placed along the bond between
the QM and MM region at a suitable distance (~1 10\) to satisfy
valence requirements. The link atom is included in the QM part
of the calculation as a regular QM atom. It shares the same pair
list for QM/MM interactions as real QM atoms. Such an
approach does nothing to maintain the bond between the QM
and MM regions and so this must be dealt with classically in the
MM part of the calculation.

There are a number of ways to implement a link atom
approach that deal with both the way the link atom is positioned,
the way the forces on the link atom are propagated, and the way
nonbonding interactions around the link atom are treated. We
have implemented a link atom approach that is similar to that
used by Dynamo'® where the link atom is treated as part of the
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covalent bond between the QM and MM atoms bonded across
the interface. Each time an energy or gradient calculation is to
be done, the link atom coordinates are automatically generated
from the coordinates of the atoms making up the QM-MM cova-
lent pair. The link atom is placed along the bond vector joining
the QM and MM atoms using the formula:

MM — QM 30)

L =Tom + di—qm —
'MM — 'QM

where 7, Fom, and Fyy are the position vectors of the link
atom, QM atom and MM atom respectively and d; _qm is a user
defined constant specifying the QM to link atom bond length.
The default link atom is a hydrogen atom but this can be
changed by the user.

Once the QM gradient has been calculated the force on each
link atom is redistributed between the QM and MM link pair by
application of eq. (31) and the corresponding y and z component
forms.

OE(rL) or, . ORn
L= — =—-VE-——=F-
x QM axQM L axQM L aXQM (31)
_ O,
F. =Fp-
e D
where F/_ and F’__ are the x components of the force on the
XQM XMM

Ql A —
QM and MM atom respectively due to the link atom, F| is the
force vector on the link atom due to the QM potential, and the
partial derivatives can be expressed as:

o, (1 _ diqm >l.— dr—qm (v — Xoum)
dviv—om dym — QM?

aXQM -
on di_om - di- -
i v ; di-ou(oum 3XQM> (v —7om)  (32)

(Pvm — Tm)

Oxvm dvv-Qu dviv-om
where 7 is the Cartesian x unit vector and dyy — om = Irym —

There are a number of advantages to this link atom approach.
The first is that constraining the link atom position to the QM-
MM link pair bond vector does not introduce extra degrees of
freedom into the calculation. This makes temperature and pres-
sure control easier, and also means that statistical averages and
fluctuations can be directly compared between pure MM and
hybrid QM/MM simulations. The second is that the entire link
atom procedure is transparent to the user. The user simply
selects which atoms are to be treated quantum mechanically and
sander then determines what adjustments need to be made to
ensure the total system charge is conserved, which bonds are to
be broken, how many link atoms are needed, and where they are
to be placed. The third is that the link atom position need only
be known by the QM part of the code and as such there is no
need for special restart file formats or extension of the coordi-
nate, force or velocity arrays. This makes the implementation
significantly easier and reduces the potential for coding errors. A
fourth advantage is that the definition of the link atom position
(30) ensures that the link atom is always in the correct position
each time the QM potential is calculated. Our experience shows
that this greatly improves the convergence behavior and stability
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of QM/MM MD simulations and allows time steps of the same
magnitude as are typically used in classical MD simulations.

The remaining details of how the QM-MM boundary is
treated are as follows: the MM bond terms between QM and
MM atoms are calculated classically using the Amber force field
parameters, as are any angle or dihedral term that include at
least one MM atom. The Lennard-Jones interactions between
QM-MM atom pairs are calculated in the same way as described
in the section above with exclusion of 1-2 and 1-3 interactions
and scaling of 1—4 interactions as in the Amber force field.>
What remains are the electrostatic interactions between QM and
MM atoms around the region of the link atom. A number of
schemes have been proposed including simply neglecting all
charges that are within three bonds of a QM atom or alterna-
tively scaling the charges. However, we have found that all of
these approaches are unsatisfactory and so in Amber we have
chosen to use the method advocated by Field et al.,4 where all
electrostatic interactions between all MM atoms (excluding MM
atoms directly bonded to a QM atom) within the user specified
cutoff distance of any QM atom are calculated for all QM
atoms, including the link atom, without exclusion or scaling.
The electrostatic interactions of the MM link pair atom are
replaced by those of the link atom, whereas the VDW interac-
tions remain with the MM link pair atom. The link atom is
treated in the same way as the “real” QM atoms, sharing the
same nonbond list as the other QM atoms. Test calculations
have shown that this approach gives a significantly better distri-
bution of the charge on QM atoms around the QM-MM interface
than is observed if the QM link atom interacts only with other
QM atoms as was the case with the Amber v8 implementation.
Figure 2 illustrates several alternatives for a tryptophan dipep-
tide in a sphere of water. Here it can be seen that for case 3 the
link atom charge remains stable and close to that of the other
CB hydrogens. In the alternative cases the link atom charge fluc-
tuates significantly because of an inbalance of the MM charge
field experienced by the link and non-link QM atom:s.

When adding link atoms to a QM/MM system it is essential
that the total charge of the system be maintained. Charge con-
servation with link atoms in our implementation is achieved by
one of two methods. Any difference in charge between the QM
region and the parameterized (RESP) charges of the MM atoms
that are replaced by QM atoms can either be distributed to the
MM atoms surrounding the MM link atom pair or can be distrib-
uted evenly across all the remaining MM atoms, the later option
being the default behavior. Since the integer charge of the QM
region is determined at runtime so this correction can be done
as part of the initial simulation setup.

To highlight the importance of rigorous charge conservation
in link atom schemes, and to facilitate a comparison between
our link atom scheme and the various QM/MM frontier
approaches used in other QM/MM implementations we studied
the gas phase deprotonation energies of a series of aliphatic
alcohols and carbonic acids as was conducted by Konig et al. in
their evaluation of various QM/MM frontier treatments with
SCC-DFTB.*! We used the exact methodology they used to gen-
erate Table 3 in their paper. To facilitate a direct comparison
with their results we used CHARMM parameters and charges
for the MM region. As described earlier Amber 9 offers two dif-
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Figure 2. Plot showing the link atom Mulliken charge as a function
of time for a MD simulation of tryptophan dipeptide in a 20 A ra-
dius TIP3P solvent cap with no cutoff. Inset shows the QM atoms
and the bond vector along which the single link atom was placed.
The charge for three different link atom methods is shown. Case 1
is where the link atom interacts only with QM atoms and the MM
link pair atom (Co) interacts with all QM atoms except the link
atom. Case 2 is similar to case 1 except that the interaction between
the MM link pair atom and the non-link QM atoms is also excluded.
Case 3 is the method currently implemented in Amber 9 where by
the link atom interacts with both QM and MM atoms and MM link
pair atoms are excluded from all electrostatic interactions.

ferent options for dealing with charge conservation. We tested
the ability of both methods to reproduce the pure QM gas phase
deprotonation energy as well as testing the effects of not rigor-
ously conserving charge. Table 1 shows the results for SCC-
DFTB and PM3-PDDG. Failure to ensure that the total system
charge is conserved, somewhat analogous to the single link atom
(SLA) approach in Konig et al.’s’' paper, leads to significant
errors in the predicted deprotonation energies. However, our link
atom method, when coupled with charge conservation performs
very well with errors that are comparable with those observed
for the divided frontier charge (DIV) approach that Konig
et al.>! found to give the best overall performance in their study.

Energy Conservation and Testing

Single Point Accuracy

One problem we encountered when attempting to verify the ac-
curacy of our QM/MM implementation was the inconsistency in
energies reported from various semi-empirical QM implementa-
tions. For a system as simple as N-methyl acetamide (NMA) in
gas phase, MOPAC v6.0,"” MOPAC 2007,> Gaussian 2003,
Dynamo v2.0,'° and CHARMM c31b2° all yield different values
for the predicted heat of formation (Table 2). These differences
have been tracked down to inconsistencies in values of certain
constants, sometimes even within a single code. Unlike ab initio
methods, which can be expressed in atomic units that are inde-
pendent of conversion factors, semi-empirical matrix elements
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are defined through fitted parameters that have experimental
units (usually in electron Volt). In our QM implementation we
have (somewhat arbitrarily) elected to use the same constants
and conversion factors that are used in Dynamo. Our code will
therefore exactly reproduce the energies reported by Dynamo.
The supplemental material shows how to modify CHARMM,
Mopac 6.0 and Gaussian so that they will reproduce the Amber
or Dynamo QM energies to 10 significant figures.

Gradient Accuracy

People running classical force field simulations can generally
expect that the forces used in MD are accurately the gradients
of the potential energy so that a NVE simulation should yield
constant total energy with respect to time. However, this has of-
ten not been true for QM/MM simulations since the QM portion
of a QM/MM calculation uses an iterative SCF procedure, the
forces are only sufficiently accurate to conserve energy if the
difference in energy between subsequent SCF steps is converged
to the order of around 1 X 10~ % to 1 X 10~° kcal/mol.

We tested the ability of sander v9, sander v8, ROAR v2.1,
CHARMM v31b2, and Dynamo v2 to simulate the NVE ensem-
ble for a simple QM system undergoing dynamics by running a
2.5 ns QM MD simulation of NMA in gas phase. We con-
structed the same simulation in all the codes. Starting from a
pre-equilibrated structure of NMA at 300 K we ran 5,000,000
steps of molecular dynamics in a single run in gas phase with
no thermostat and an integration time step of 0.5 fs, yielding 2.5
ns of simulation. Since ROAR would not run without a thermo-
stat we selected the Nose Hoover Chain Thermostat with 1 chain
and 1 thermostat per chain and a thermostat mass of 1.0 X 10'°.
Such a thermostat mass is sufficiently large that it should ap-
proximate the NVE ensemble over the timescale of the simula-
tion. The energy and forces at each step of MD were calculated
using the PM3 semi-empirical Hamiltonian and the requested
SCF convergence criteria was set at 1.0 X 10~° kcal/mol. No
cutoffs were used in the calculation and no atoms had their
motions restricted or damped in any way.

Figure 3 shows the total system energy (SCF energy + ki-
netic energy) for each of the simulations as a function of time.
Both sander v9 and DYNAMO v2 give the same answer and
conserve energy to within 0.02 kcal/mol over the full 2.5 ns
simulation. ROAR v2.1 and CHARMM v31b2 show similar
behavior, with a gradual cooling of the system as kinetic energy
is slowly lost due to inaccuracies in the gradients. sander v8 ini-
tially looses energy at a very rapid rate and then shows an ab-
rupt jump in the energy after 136,000 steps of MD. This is fol-
lowed by continued loss of energy and sudden, seemingly ran-
dom, jumps in energy for the rest of the simulation; (we still do
not understand the origins of this odd behavior). The CHARMM
simulation on the other hand simply cooled down to 0.1 K over
1.5 ns before crashing with a segmentation fault.

The sander v8, ROAR v2.1 and CHARMM v31b2 results are
very worrying since they imply that the gradients are inaccurate
even with a stringent SCF convergence criteria. It would appear
that of the five codes tested only sander v9 and DYNAMO v2
have accurate gradients. The analytical gradients in our sander
v9 implementation agree well with numerical gradients: for an
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Table 1. Predicted Gas Phase Deprotonation Energies, as a Function of the Charge Conservation Approach,
for QM Fragments Embedded in an MM Environment Using Amber 9’s Link Atom Approach (in kcal/mol).”

SCC-DFTB PM3-PDDG
Model Pure QM" NA® NN© ALLS® Pure QM" NA® NN© ALL®
A. CH;—OH 397.1 387.9
B. CH;—CH,—OH 397.0 368.2 397.7 401.2 383.9 355.5 384.6 388.6
dev —28.8 0.7 42 —-28.4 0.7 47
C. CH;—CH,—CH,—OH 395.5 382.2 404.4 400.8 382.9 369.5 391.6 387.8
dev —13.3 8.8 52 —-13.4 8.7 49
D. CH;—CH,—CH,—CH,—OH 381.7 403.9 397.9 384.3 369.1 391.2 385.1
dev —-13.1 9.0 3.0 -15.2 6.9 0.8
E. CH;—CH,—OH 394.9 383.9
F. CH;—CH,—CH,—OH 395.5 370.3 397.9 397.1 382.9 358.5 384.5 383.9
dev -252 23 1.6 —24.4 1.6 1.0
G. CH;—CH,—CH,—CH,—OH 394.9 380.8 399.3 395.8 384.3 370.3 384.6 385.0
dev —14.1 44 1.0 —-14.0 0.3 0.7
H. CH;—CH,—CH,—CH,—CH,—OH 394.6 380.6 399.1 393.9 384.0 370.1 387.8 383.2
dev —14.0 45 —0.7 —-13.9 3.8 -0.8
I. CH;—COOH 366.3 349.2
J. CH;—CH,—COOH 365.5 338.4 363.5 366.2 348.8 3235 345.5 349.0
dev -17.1 =20 0.7 253 -33 0.2
K. CH;—CH,—CH,—COOH 364.9 349.4 369.5 366.4 348.7 333.2 352.1 349.4
dev —-15.5 45 15 -15.5 3.4 0.8
L. CH;—CH,—CH,—CH,—COOH 364.2 349.2 368.0 362.8 348.1 332.9 350.6 345.9
dev -15.1 3.7 —-14 -15.2 2.5 -22
M. CH3;—CH,—CH,—CH,—CH,—COOH 364.4 349.1 368.2 361.4 348.0 332.8 350.6 344.6
dev —-15.3 3.8 -3.0 —-15.2 2.6 -34

“The QM region is shown in the bold faced type. A single link atom is added at the bond crossing the QM/MM
boundary. Deviations are shown relative to the entire molecule computed using a pure QM treatment. For SCC-
DFTB we used a value of 141.8 kcal/mol for the energy of an isolated proton® and for PM3/PDDG we used a value

of 367.2 kcal/mol”’.

The Pure QM column indicates a calculation encompassing the entire molecule.
“The different link atom charge conservation algorithms, with the corresponding Amber 9 control keyword, are as fol-

lows:

NA (adjust_q = 0), No adjustment is made to preserve charge.
NN (adjust_g = 1), Nearest Neighbor. The charge correction is applied to the nearest nlink MM atoms to the MM

atoms that are replaced electrostatically by link atoms.

ALL (adjust_g = 2), Default behavior. The charge correction is divided equally amongst all MM atoms (except for

those adjacent to link atoms).

SCF and density matrix element convergence of 10~ ° kcal/mol
we see an RMS gradient error, for the pure QM gas phase NMA
system discussed above, of approximately 1.1 X 10~% kcal/mol/
A. This compares favorably with the error in the classical MM
force field gradients of approximately 0.5 X 10~° keal/mol/A.
The remaining error reflects the limitations of the finite differ-
ence approach, not actual errors in the MM gradients.

The increased accuracy of the gradients in our new QM/MM
implementation is due in part to our careful rewriting of the
MOPAC code. This included centralizing all of the constants
and conversion factors and ensuring, unlike in MOPAC v6, as
illustrated in the supplementary material, that only one value of
each constant was used throughout the code and that all con-
stants and conversion factors are self consistent. Additionally
there are some conditions where exponentials are vanishingly
small, and so can be skipped for performance reasons, and also
conditions when rotating from local frames to molecular frames
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in which certain vectors can be assumed to be parallel to an axis
when they are very close to that axis. We have ensured that the
checks used in both the energy and derivative sections of the code
are consistent. We have also ensured that pseudo diagonaliza-
tions™* of the Fock matrix are only done during the middle part of
the SCF. By switching to full diagonalisations for the last few
SCF cycles we have ensured that our gradients are accurate. Fail-
ure to do this gives analytical gradients that at best have an
RMSD of 1 X 10°* kcal/mol/A from the numerical gradients.
Our link atom approach, as described earlier, also conserves
energy when run in the NVE ensemble, as illustrated in Figure 4.
This shows the total energy, classical potential energy + scf
energy + kinetic energy, for a 10 ns simulation of alanine
dipeptide in which the central part of the molecule was treated
quantum mechanically using the PM3 Hamiltonian, and the re-
mainder of the molecule was treated using the classical FF99
force field.>> Two hydrogen link atoms were added at a distance
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Table 2. SCF Energies Reported by Different Semi-Empirical Packages for Identical Single Point Energy

Evaluations of N-Methyl Acetamide.

Program AM1 ESCF (Kcal/mol) PM3 ESCF (Kcal/mol)
AMBER v9.0 —34.92134208 —44.35423579

CHARMM c33bl —34.97754796 (—34.92134208%*) —44.40827788 (—44.35423579%)
MOPAC v6.0 —34.82651486 (—34.92134209%*) —44.27659532 (—44.35423579%)
MOPAC 2007* —34.90320 —44.39969

Dynamo v2.0 —34.92134208 —44.35423579

Gaussian 03 Rev C.01

—34.97477068" (—34.92134208*)

—44.40566821° (—44.35423579%)

Source code not available so higher precision printing was not possible.

"With iop(4/22 = 100) set.

*Values in brackets show energy reported after code changes described in the supplemental material.
In all cases the SCF convergence was set to 1.0 X 10™® Kcal/mol and the input structure was identical.

of 1.00 /f\, one along each of the C—N bonds that crossed the
QM/MM boundary. All other aspects of the simulation were the
same as the NMA calculation described above. This is not an
ideal choice of QM/MM boundary, but is used here to test the
accuracy of the gradients in our implementation. It can be seen
from Figure 4 that energy is successfully converged with a
change of only 0.03 kcal/mol of energy over the entire 10 ns
simulation.

Performance

A common problem that is encountered by researchers carrying
out QM/MM simulations is the excessive computational resour-
ces such calculations can demand. Our trials with sander 8
showed that performance was indeed an issue as illustrated by
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Figure 3. Total energy vs. time for a pure QM MD simulation
(PM3) of NMA at 300 K in the NVE ensemble. The results from
each program are labelled. The Amber v9 and Dynamo v2 results
were the same and so overlap on the plot. (Inset shows zoom of
Amber v9 and Roar 2.1 results over the first 500 ps.)
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Tables 3 and 4. The sander 8 QM/MM implementation will also
not run in parallel and so it is not possible to increase the calcu-
lation speed by going to large numbers of processors.

Inspection of the code revealed that the poor performance
was due to outdated programming practices such as the use of
computed GOTO’s as well as inefficient programming techni-
ques such as poor use of memory, branching within loops and
reading and writing integral data to disk at every step. To
address the performance issues in sander 9 we have completely
rewritten the code using current programming paradigms as well
as more modern machine resource expectations.

Tables 3 and 4 give performance comparisons between the
five main codes we have discussed in this article. Table 3 gives
timings for malachite green (50 atoms) in gas phase for 1000
steps of 1 fs each and a SCF convergence criteria for all pro-
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Figure 4. Total energy vs. time for a combined QM/MM simulation
with link atoms of Alanine Dipeptide at 300 K in the NVE ensem-
ble using Amber v9. Inset shows the QM and MM partitioning.
Hydrogen link atoms were placed at a distance of 1 A from each
nitrogen along the bond vector that was broken.
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Table 3. Wallclock Time in Seconds for a 1000 Step Pure QM/MD

Simulation of Malachite Green (50 atoms) in Gas Phase on a Single
Processor of an Intel Pentium-D 3.2 Ghz Machine with 4 GB of 667
MHz DDR2 Memory.

Program Time (s) PS/Day
sander v9 120.4 717.8
sander v8 473.2 182.6
ROAR v2.1 548.3 157.6
DYNAMO v2.0 355.9 242.8
CHARMM v31b2 497.0 173.8

Times are averages over 10 runs. Simulation details: No cutoff, PM3,
1 fs time step, no shake, no coordinate file, SCF convergence = 1.0 X
108 Kcal/mol. Intel ifort v9.1.039 was used to compile all codes.

grams of 1 X 10 ® kcal/mol. As can be seen from this data our
newly written QM implementation is significantly faster than the
other codes. Table 4 shows a similar trend with timings for a
QM/MM simulation of malachite green in a solvent cap of
TIP3P water. Here the total system size was 5985 atoms, with
50 treated quantum mechanically and 5935 treated classically.
Classical-only simulation times (using the gaff force field®® for
the solute) are also shown for comparison. Here the calculation
was run with a time step of 1 fs for 1000 steps. The SCF con-
vergence was set to 1 X 10~% kcal/mol in all codes and a total
of two simulations were run; a classical only simulation with a
non-bonded cutoff of 14 A and the equivalent QM/MM simula-
tion. Again our new implementation is significantly faster
achieving over 218 ps/day (437 ps/day if shake is used). This
performance can also be somewhat improved by running simula-
tions in parallel across several processors.

This increase in performance has been achieved through a
number of routes, but has not been achieved by sacrificing accu-
racy or introducing any new approximations. One way we have
done this is by dynamically adjusting the amount of memory
used to the available memory on the machine. When the
MOPAC code, from which all of the programs we have com-
pared have their origins, was written memory was very sparse
and so the atom-atom distances, one and two electron repulsion
integrals, etc, were typically recalculated on the fly during the
SCF procedure and the gradient evaluation. This is no longer the
case. Even a basic workstation now has in excess of 1 GB of
ram. With this in mind we have introduced a number of per-
formance enhancing storage options in sander 9. By default the
code will store as much as possible in memory. This includes
storing the one electron integrals, both QM-QM and QM-MM in
memory. sander v8 and ROAR write these to disk and then read
them back in when needed whereas DYNAMO recalculates
them on the fly. We also store many other calculation elements
in memory whenever possible, including the two electron inte-
grals, basis set expansion data, precomputed parameters and as
many equations as possible that depend on the distance between
atom pairs. In this way we do each calculation only once. All of
these memory storage options are controllable so that the user
may choose to save memory at the expense of performance.

We have also significantly improved performance by modern-
izing the code. We have modified our array storage to try to
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ensure that memory accesses are almost always linear. Combin-
ing several arrays into one ensures that the computer can access
the next element that is required for a calculation by simply
incrementing a pointer rather than fetching the value from a dis-
tant memory location. This maximizes the number of cache hits
that are achieved and also allows the cpu to pre-fetch large
blocks of memory efficiently.

Finally we have streamlined the code as much as possible.
All branching is done outside of loops whenever possible and
loops have been split so that we do not mix integer and floating
point arithmetic within the same loop. This allows inner loops to
be unrolled by the compiler and also allows for easy vectoriza-
tion to take advantage of special hardware such as the SSE2
registers on Intel P4 chips.

We have also improved performance by writing the code for
the purpose of doing QM/MM MD. In this way we have included
only those options that are needed for doing MD simulations.
This assumption also allows other enhancements to be made. For
example the difference in structure between subsequent MD steps
will generally be small allowing the density matrix from the pre-
vious step to be used as the starting point for the next step’s SCF
procedure. This greatly accelerates convergence of the SCF.

For explicit solvent periodic boundary simulations Table 5
shows a comparison of our new QM/MM PME implementation
and the original QM/MM Ewald implementation based on the
work of Nam et al.** In both cases the MM/MM interactions were
calculated using PME. It can be seen that our PME implementa-
tion is significantly faster than the Ewald implementation. At
12,612 atoms it is over 2.3 times faster and this ratio grows as the
total number of atoms in the simulation increases. Timings for the
equivalent purely classical calculation are shown for comparison.
The QM/MM PME implementation is also significantly more effi-
cient in terms of memory usage. The LADH simulation with the
QM/MM Ewald method requires more than 1100 MB of memory
while the PME version requires only 17.6 MB.

The major remaining bottleneck is the matrix diagonalization
step which while it has been optimized is currently not parallel-
ized. This ultimately limits parallel scalability to approximate 8
cpus depending on the size of the QM and MM regions. We are

Table 4. Wallclock Time in Seconds for 1000 Steps QM/MM/MD and
Classical Simulations of Malachite Green (QM, 50 atoms) in 1978
Molecule TIP3P Water Sphere (MM, 5935 atoms) on a Single Processor
of an Intel Pentium-D 3.2 Ghz Machine with 4GB of 667 MHz DDR2
Memory.

Program MM Only (s) QMMM (s) Ratio QMMM/MM Only
sander v9 189.5 3954 2.09
sander v8 222.0 2349.8 10.58
ROAR v2.0 213.8 4123.6 19.29
DYNAMO v2.0 333.2 845.0 2.54
CHARMM v31b2 296.4 1366.9 4.61

Times are averages over 10 runs. Simulation details: 14 A cutoff, 1 fs
time step, constant temperature (300 K), no shake, SCF convergence =
1.0 X 10~® Kcal/mol. Intel ifort v9.1.039 was used to compile all codes.

DOI 10.1002/jcc



1030 Walker, Crowley, and Case * Vol. 29, No. 7 * Journal of Computational Chemistry

Table 5. Wallclock Time in Seconds for 1000 Steps QM/MM/MD and Classical Simulations of Various
Systems in TIP3P Water with Full Treatment of Periodic Electrostatics Using a QM/MM Compatible PME

Implementation and Sander v9.0.

Ratio QMMM/MM

System NATOM (NQM) QMMM (PME) (s) QMMM (Ewald)® (s) MM Only (s) Only (PME/Ewald)
Malachite Green 12,612 (50 QM) 514 1183 210 2.45/5.63
Dihydrofolate Reductase 23,558 (66 QM)° 919 2189 420 2.19/5.22
Liver Alcohol Dehydrogenase 76,723 (71 QM) 2818 7032 1505 1.87/4.67

*Timings here are for QM-MM and QM-QM interactions calculated using Ewald and MM-MM interactions calculated
using PME. An 8 A cutoff was used for the direct space sum of both the electrostatic and van der Waals interactions.
"Consists of 65 MM atoms treated quantum mechanically and 1 link atom.

Times are for a single processor of an Intel Pentium-D 3.2 Ghz machine with 4 GB of 667 MHz DDR2 memory

and are averages over 10 runs.

working to remove this serial bottleneck in future versions of
the software.

Overall our new QM/MM implementation is sufficiently fast
that a portion of the system can be treated quantum mechani-
cally without an excessive overhead in computing time. For
example a periodic boundary simulation of LADH in TIP3P
water involves a total of 76,723 atoms. Choosing to treat the
coenzyme, NADH, in this system using the PM3 Hamiltonian
(71 atoms) requires only 1.87 times more cpu time with respect
to doing the calculation purely classically (Table 5).

Conclusions and Planned Development

In this article we have discussed our new semi-empirical hybrid
QM/MM routine that forms part of the sander v9 module in
Amber v9. This implementation is a significant improvement
over previous code. We have greatly simplified the way in
which QM/MM simulations are setup and run such that the user
now simply adds a few extra options to their normal input file.
If a simulation is setup to run in sander using a classical MM
force field then it is a trivial matter to have part of this system
treated quantum mechanically. A rewrite of the QM portion of
the code has significantly improved the calculation speed and at
the same time corrected deficiencies in the gradient accuracies
of previous codes. Our new QM/MM implementation can suc-
cessfully conserve energy and so does not need to rely on a ther-
mostat to correct these deficiencies. The gradient accuracy and
the enhanced computation speed has been achieved simply by
careful coding, we have not implemented any extra approxima-
tions or accelerated convergence options. As such there is no
reason why these improvements could not be added to other
semi-empirical QM/MM codes with minimal effort and indeed
work is currently underway to integrate this code into
CHARMM.

Our implementation supports either pure QM or QM/MM
simulations using either the PM3, PDDG/PM3, PM3CARBI,
AMI1, MNDO, PDDG/MNDO, and DFT/B Hamiltonians. We
have also implemented a complete treatment of long range elec-
trostatics using a QM/MM modified PME method derived in this
article as well as a QM/MM compatible Generalized Born model
based on the approach described by Pellegrini and Field.**
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