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Abstract: Version 9 of the Amber simulation programs includes a new semi-empirical hybrid QM/MM functional-

ity. This includes support for implicit solvent (generalized Born) and for periodic explicit solvent simulations using

a newly developed QM/MM implementation of the particle mesh Ewald (PME) method. The code provides suffi-

ciently accurate gradients to run constant energy QM/MM MD simulations for many nanoseconds. The link atom

approach used for treating the QM/MM boundary shows improved performance, and the user interface has been

rewritten to bring the format into line with classical MD simulations. Support is provided for the PM3, PDDG/PM3,

PM3CARB1, AM1, MNDO, and PDDG/MNDO semi-empirical Hamiltonians as well as the self-consistent charge

density functional tight binding (SCC-DFTB) method. Performance has been improved to the point where using

QM/MM, for a QM system of 71 atoms within an explicitly solvated protein using periodic boundaries and PME

requires less than twice the cpu time of the corresponding classical simulation.
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Introduction

The idea of combining quantum mechanical (QM) and molecu-

lar mechanical (MM) potentials into a hybrid QM/MM potential

was first realized by Warshel and Levitt (1976) in their paper on

the catalytic mechanism of lysozyme.1 Typically in a QM/MM

approach the parts of the protein and substrate that are directly

involved in the enzyme reaction are calculated using a QM

potential function, and the remaining atoms in the system use a

classical MM potential. This avoids a major deficiency with

classical MM calculations, where chemical bonds cannot be

made or broken during a simulation. The coupling of a QM and

MM potential allows just the reaction center to be studied quan-

tum mechanically while keeping the calculation complexity low

by using a more approximate MM potential elsewhere. This par-

titioning of the system allows calculations on systems signifi-

cantly larger than would have been possible with a pure QM

approach, and at the same time enables calculations such as

reactions to be studied for which classical MM potentials are

not appropriate. A number of different hybrid potentials have

been developed with QM methods ranging from empirical va-

lence bond approaches2,3 to semi-empirical molecular orbital.4,5

density functional6 and ab initio methods. Such approaches have

been used in the study of a wide range of problems including

studying solvation effects on reactions in proteins and in solu-

tion, and of solvent-induced spectral shifts.3,7,8

Interest in hybrid QM/MM potentials has lead to a number of

popular implementations, including CHARMM,9 Dynamo,10

BOSS,11 and Amber,12 that are designed for biomolecular simu-

lations. A QM/MM potential for running MD was first intro-

duced into the Amber software package by Singh and Kollman13

in 1986, which used a modified version of Gaussian 80.14,15

Amber v4.0 was later used as the basis for the program

ROAR,16 which provided semi-empirical QM/MM support via a

modified version of MOPAC.17 With version 8 of Amber, semi-

empirical support was provided, on a functionally limited basis

via an interface to the program DivCon Lite.18

Here we discuss the implementation of QM/MM in version 9

of Amber. This new implementation is tightly integrated within

the regular sander MD program and provides seamless support for

QM/MM calculations without the need for any extra configuration

files, special executables or modified scripts. We give details of

tests of energy and gradient accuracy, a new link atom approach,
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how we have modified the classical Particle Mesh Ewald (PME)19

approach for treating long range electrostatics to make it compati-

ble with QM/MM calculations, and new functionality such as sup-

port for the generalized Born implicit solvation model.20,21 We dis-

cuss the performance of the new code with comparison to other

commonly used MD packages such as CHARMM and Dynamo.

Capabilities of the Code

Our primary motivation for rewriting the QM/MM code in Amber

was to make its use as orthogonal as possible to other choices made

in classical simulations, so that choosing to have a QM active site

places as few restrictions as possible on what else can be done in the

simulation. This implies that the accuracy of the energy and gradients

(and hence energy conservation in NVE simulations) should be com-

parable with that achieved for empirical potentials, and commonly

used options for MM simulations (such as periodic boundary condi-

tions with PME,19 or generalized Born implicit22 solvent models)

should be supported in the QM/MM code. Since biochemical simula-

tions require extensive exploration of configuration space, we have

limited the code (for now) to semiempirical and DFTB methods that

are fast enough to be used for simulations of tens or hundreds of

nanoseconds that are commonly used for MM simulations. The capa-

bilities of the new QM/MM implementation include the following:

1. Support for minimization and molecular dynamics with either

pure QM or QM/MM energy and gradient evaluation using

either the PM3,23,24 PDDG/PM3,25 PM3CARB1,26 AM1,27

MNDO,28,29 or PDDG/MNDO25 semi-empirical Hamiltonians

as well as support for the density functional theory-based-

tight- binding (DFTB) Hamiltonian30,31 and its self-consist-

ent-charge version, SCC-DFTB.32,33 Details of the DFTB

implementation are discussed elsewhere.34

2. The ability to apply the standard SHAKE35 algorithm of

sander to QM as well as MM bonds involving hydrogen

atoms. This allows stable QM/MM simulations, where bonds

involving hydrogen are not expected to be broken, to be run

using a 2 fs time step.

3. Support for gas phase, solvent cap and periodic (PME36)

QM/MM simulations.

4. Support for all of the generalized Born solvation models22 that

are present in sander, using the Born radii developed for classical
simulations and dynamically calculated Mulliken charges.

5. Application of restraints on the QM or MM regions using any

of the methods currently implemented in sander allowing for

targeted MD, Nudged Elastic Band, and umbrella sampling.

6. Support for QM/MM Replica Exchange simulations.

7. Support for Path Integral QM/MM MD simulations.

8. Support for QM/MM based thermodynamic integration calcu-

lations.

9. Simulation in parallel over either shared memory or distrib-

uted memory computer clusters using the message passing

interface (MPI).

The Hybrid QM/MM Potential

The system is partitioned into two regions, a QM region consist-

ing of the atoms defined by either the qmmask or iqmatoms key-

words, and an MM region consisting of all remaining atoms. For

a typical protein simulation in explicit solvent, the number of

MM atoms is much greater than the number of QM atoms. Ei-

ther region can contain zero atoms, giving either a pure QM

simulation or a standard classical simulation. The effective Ham-

iltonian, Ĥeff, operates on the system’s wavefunction C, and is

dependent on the electron positions, �re, the positions of the MM

nuclei, �rm, and the QM nuclei, �rq:

ĤeffW
�
�re; �rq; �rm

� ¼ Eeffð�re; �rq; �rm
�
Wð�re; �rq; �rm

�
(1)

The effective Hamiltonian consists of three components—one

for the QM region, one for the MM region and a term that

describes the interaction of the QM and MM:

Ĥeff ¼ ĤQM þ ĤMM þ ĤQM=MM

Eeff ¼ EQM þ EMM þ EQM=MM

(2)

The MM term can be removed from the integral since it is

independent of the distribution of the electrons:

Eeff ¼ W
��ĤQM þ ĤQM=MM

��W� �þ EMM (3)

The interaction term ĤQM/MM represents the interaction of

the MM point charges with the electron cloud of the QM atoms

and the interaction between the MM point charges and the QM

atomic cores; here a ‘‘core’’ represents the nuclear charge plus

any core electrons that are not treated explicitly. For the case

where there are no covalent bonds between the QM and MM

regions, this term is the sum of an electrostatic term and a Len-

nard–Jones (VDW) term:

ĤQM=MM ¼ �
X
e

X
m

qmĥelectron
�
�re; �rm

�þX
q

X
m

zqqmĥcore
�
�rq; �rm

�

þ
X
m

X
q

Amq

rmq12
� Bmq

rmq6

� �
ð4Þ

where e refers to electrons, m to MM atoms and q to the QM

cores (nuclei and core electrons). qm and zq are the charges on

MM atom m and core of the QM atom q, �r is the coordinate

vector, rmq the distance between atoms m and q and A and B are

Lennard–Jones interaction parameters. There has been discussion

concerning whether or not the Lennard–Jones (LJ) coefficients

should be explicitly parameterized for QM-MM interactions.37,38

Amber allows the user to specify which parameters will be used,

but does not yet have a default set of modified LJ parameters.

The operators ĥ specify the interaction between the QM elec-

trons and MM point charges. For semiempirical Hamiltonians

we follow the MOPAC programs, and use the full electrostatic

interactions between the QM charge density (expanded in a

STO-6G minimal basis set) and the point charges on the MM

atoms. For DFTB the QM/MM interactions are represented by a

point-charge Coulomb interaction between the Mulliken charges

and MM partial charges.
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Once an effective Hamiltonian for the system has been

defined the wavefunction and energy can be evaluated by mini-

mizing Eeff in eq. (3) with respect to the molecular orbital coef-

ficients of the ground state wavefunction using a self-consistent

(SCF) procedure to solve a restricted Hartree–Fock approxima-

tion of the electronic wave function of the system at each step.

QM/MM Long Range Electrostatics

Short-range electrostatics (for atoms within a cutoff) are straight-

forward to implement using eq. (4). However, it is well under-

stood that long range electrostatic interactions and solvent

effects play an important role in the behavior of solvated sys-

tems. Long range interactions of periodic classical systems in

sander are traditionally included via the application of a Particle

Mesh Ewald (PME) method.19 This is an adaptation of the regu-
lar Ewald sum method39 for calculating the full electrostatic

energy of a unit cell in a macroscopic lattice of repeating

images. The PME method is fast since the reciprocal space

Ewald sums are B-spline interpolated onto a grid and the convo-

lutions necessary to calculate the sums are evaluated in Fourier

space using fast Fourier transforms.

Recently Nam et al. have described an implementation of the

Ewald summation method40 compatible with semi-empirical QM

methods, and Laino et al. have published a similar implementa-

tion for DFTB based on the multigrid approach.41 This Ewald

QM/MM method provides a correct implementation of long-range

electrostatics in periodic systems, but it is very slow for any size-

able simulation system. Here we describe how the faster PME al-

ternative can be adapted for use with the QM/MM model.

If we denote the electrostatic energy of a periodic QM/MM

system as EPeriodic then

EPeriodic ¼ EPeriodic½q; q� þ EPeriodic½q; q� þ EPeriodic½q; q� (5)

where q represents the partial charges of the MM atoms, q repre-

sents the electron density and core charges of the quantum region

and the [q,q] notation represents the interaction of q with q.
To use existing nonperiodic treatments of QM/MM systems,

we follow Nam et al. to define the complete periodic energy as

a sum of the nonperiodic energy (as determined by conventional

cutoff techniques), ERS, plus a periodic boundary correction

term, DEPBC,

EPeriodic ¼ ERS þ DEPBC (6)

Each of the terms of eq. (5) can be redefined in this way. The

key approximation is that the full charge density, q, in DEPBC

[q,q] and DEPBC[q,q], can be approximated by interactions with

Mulliken charges, denoted Q, which are used as surrogates for

the electron densities of the wave functions on the QM atoms,

DEPBC½q; q� ¼ EPeriodic½q; q� � ERS½q; q�
� EPeriodic½Q;Q� � ERS½Q;Q� ¼ DEPBC½Q;Q� (7)

where,

EPeriodic½Q;Q� ¼ 1

2

XQM
j;i

X1
n¼0

0 QiQj

j�rij þ nj (8)

in which the first sum is over all atom pairs in the unit cell and

the second sum is over all unit cell translations. The prime in

the second sum is to indicate that the i 5 j term is not included

when n 5 0. The Ewald method splits the infinite sum into three

convergent sums:

EPeriodic½Q;Q� ¼ 1

2pV

XQM
i

XQM
j

X
�k 6¼0

QiQj
4p2

k2

� �

3 exp � k2

4j2

� �
cos
�
�k � �rij

�

þ 1

2

XQM
i

XQM
j6¼i

QiQj

erfc
�
j
���rij������rij�� þ

XQM
i

Q2
i

jffiffiffi
p

p ð9Þ

where V is the volume of the unit cell, k are the reciprocal unit

cell vectors, erfc is the complimentary error function, and j is a

parameter, which is chosen such that the erfc function goes to

zero within a preferred distance. The three terms are called the

reciprocal sum, the direct sum, and the self term, Erecip[Q,Q],
Edirect[Q,Q], and Eself[Q,Q], respectively,

DEPBC½Q;Q� ¼ Erecip½Q;Q� þ Edirect½Q;Q� þ Eself ½Q;Q�
� ERS½Q;Q�

¼ Erecip½Q;Q� þ Eself ½Q;Q�

þ 1

2

XQM
i

XQM
j6¼i

QiQj
erfcðjrijÞ

rij
� 1

2

XQM
i

XQM
j6¼i

QiQj
1

rij

¼ Erecip½Q;Q� þ Eself ½Q;Q�

� 1

2

XQM
i

XQM
j6¼i

QiQj

erf
�
jrij
�

rij

¼ Erecip½Q;Q� þ Eself ½Q;Q� þ DEPBC
cutoff ½Q;Q� ð10Þ

where erf is the error function.

An equivalent treatment is also used for DEPBC[Q,q]; since
an atom cannot be both a QM and a MM atom there is no self

term; this simplifies to,

DEPBC½Q; q� ¼ Erecip½Q; q� þ
XQM
i

Qi

XMM

j

qj
erf
�
jrij
�

rij
(11)

Introducing the DEPBC Mulliken charge approximation allows us

to write the periodic energy from eq. (5) as,

EPeriodic � ERS½q; q� þ DEPBC½Q;Q�
þ ERS½q; q� þ DEPBC½Q; q�
þ Erecip½q; q� þ Edirect½q; q� þ Eself ½q; q�

(12)

The first three terms are treated in the same way as that

described by Nam et al.40 in which the second term is evaluated

using a regular Ewald method. The fourth and fifth terms are the
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same as Nam et al.40 except that the reciprocal-space K-sum is

replaced with the PME method which closely parallels the regu-

lar Ewald method but shows significantly improved performance

for macromolecular systems. In particular the fourth term has

the form,

DEPBC½Q; q� ¼ EPeriodic½Q; q� � ERS½Q; q�

¼
XQM
i

Qi

XMM

j

qj W
Periodicð�ri; �rjÞ �WRS

����rij���	 


¼
XQM
i

Qi

XMM

j

qj DW
PBCð�ri; �rjÞ

	 
 ð13Þ

where CPeriodic is the full pair potential for all pairs including

periodic images to infinity, and CRS the full Culomb pair poten-

tial within a cutoff. Applying the Ewald method yields the fol-

lowing correction potential,

DWPBCðRi;jÞ ¼ Wrecipð�ri; �rjÞ þWdirect
����rij����WRS

����rij���
¼ Wrecipð�ri; �rjÞ þ DWPBC

cutoff

����rij��� (14)

where Crecip (�ri,�rj) is the reciprocal part of the Ewald pair poten-

tial due to all MM atoms interacting with QM atoms represented

as Mulliken point charges, and DCPBC
cutoff (|�rij|) is the correction to

the cutoff based real-space potential and has the form,

erf
�
j
���rij���=���rij�� by analogy to the treatment in eq. (10). The re-

ciprocal term of eq. (14) is conveniently calculated with a regu-

lar Ewald reciprocal sum but, since there are a large number of

MM atoms and the sum scales as the number of MM atoms

times the number of QM atoms, the sum becomes computation-

ally expensive. Writing the Ewald sum in the following way

with Erecip
PME (q*) representing the total reciprocal sum energy of

all atoms calculated with PME and all atoms represented by

point charges, where q* represents a combination of the static

MM point charges and the QM Mulliken charges, we can isolate

the term in question:

Erecip
PMEðq�Þ ¼

1

2

Xallatoms

i¼1

q�i
Xallatoms

j¼1

q�j
�
Wrecip

PME

�
�ri; �rj

��

¼ 1

2

XQM
i¼1

Qi

XQM
j¼1

Qj

�
Wrecip

PME

�
�ri; �rj

��þXQM
i¼1

Qi

XMM

j¼1

qj

�
Wrecip

PME

�
�ri; �rj

��

þ 1

2

XMM

i¼1

qi
XMM

j¼1

qj

�
Wrecip

PME

�
�ri; �rj

�� ð15Þ

and rearranging for the terms we need,

XQM
i¼1

Qi

XMM

j¼1

qj
�
Wrecip

PME

�
�ri; �rj

��þ 1

2

XMM

i¼1

qi
XMM

j¼1

qj
�
Wrecip

PME

�
�ri; �rj

��

¼ Erecip
PMEðq�Þ �

1

2

XQM
i¼1

Qi

XQM
j¼1

Qj

�
Wrecip

PME

�
�ri; �rj

�� ð16Þ

Using the relationship in (16), the energies and forces from

the reciprocal sums on the left can be determined from the dif-

ference of the results of a PME reciprocal sum of all the charges

and a PME reciprocal sum of just the Mulliken charges. Thus

we can rewrite eq. (12) as,

EPeriodic � ERS½q; q� þ ERS½q; q� þ Erecip
Ewald½Q;Q� þ DEPBC

cutoff ½Q;Q�
þ DEPBC

cutoff ½Q; q� þ ðErecip
PME½q�� � Erecip

PME½Q;Q�Þ þ Edirect
PME ½q; q�

(17)

The calculation is organized so that the first four terms of eq.

(17) come from the QM part of the calculation where the first

term is the direct space QM-QM interaction, the second term the

interaction of QM atoms with MM atoms that are within the cut-

off distance of any QM atom, and the third and fourth terms are

the interaction of direct space QM atoms, represented by a Mul-

liken charge approximation, with the periodic QM images. Since

the number of QM atoms is generally small compared with the

number of MM atoms, the most efficient method for the evalua-

tion of terms three and four is a regular Ewald approach. The

fifth and sixth terms are calculated by the two PME calculations

described earlier after the Mulliken charges have been deter-

mined and the final term is the classical direct space calculation

over static MM point charges. Figure 1 shows a flow chart of

the implementation of this method.

Fock Matrix Corrections

The wave function is determined by a self-consistent field

method to minimize the total energy as a set of molecular orbital

coefficients. This minimization procedure requires the diagonal-

ization of a Fock matrix.

Flm ¼ @E½q�
@qlm

(18)

is an element of the Fock matrix, and qlm is an element of the

single particle density matrix.

The Fock matrix can be split into ‘‘real space’’ and ‘‘cor-

rection’’ terms in the same way as the treatment of the potential

energy above,

FPeriodic
lm ¼ FRS

lm þ DFPBC
lm (19)

The real-space part of the Fock matrix is constructed as in the

nonperiodic case in which the MM atoms within the cutoff con-

tribute as static partial charges. The periodic-boundary correction

has the form,

DFPBC
lm ¼ @

@qlm


DEPBC½Q;Q� þ DEPBC½Q; q�� (20)

Both derivatives will be nonzero only when l 5 m because the

Mulliken charges, Q, depend only on qll, and therefore will

only add corrections to the diagonal elements of the Fock ma-

trix.

Since the definition of Mulliken charge in NDDO-based

semiempirical methods is,

Qi ¼ Zi �
X
l2i

qll (21)
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the derivative of the last line of eq. (13) with respect to qll is,

@DEPBC½Q; q�
@qll

¼ �
XMM

j

qj

�
DWPBC

�����rij����� (22)

which is simply the electrostatic potential at the position of QM

atom i due to all MM charges and their images that are not

within the direct space cutoff. Equation (22) is not a function of

the Mulliken charges so the DFPBC[Q,q] correction term can be

calculated once before the SCF procedure and simply added to

the one electron matrix. In practice the reciprocal part of this

term is calculated using a PME method where the charges on

the quantum atoms are zeroed, while the cutoff correction term

is calculated by
PMM

j qjðerf
�
j
���rij���=���rij��Þ derived from the sec-

ond term of eq. (11). In the case of the DFPBC [Q,Q] correction
term, the dependence on Q does not vanish when taking the de-

rivative with respect to qll, so this correction term must be

evaluated on every step of the SCF procedure. If there are rela-

tively few quantum atoms compared with the number of MM

atoms, a regular Ewald method is the most efficient for this part

of the calculation. Here we use an Ewald procedure that calcu-

lates the electrostatic potential at each QM atom position due to

all the QM images. This consists of a reciprocal calculation and

a cutoff correction term corresponding to terms two and three of

the third line of eq. (10).

Once the SCF procedure converges to within the chosen cri-

teria the energy is calculated as described earlier and the forces

are simply the derivative of the energy with respect to position.

We can write the force along a coordinate on a single atom as,

fxi ¼
dE

dxi

� �
(23)

where E depends on the atom positions and has the added de-

pendence on the Mulliken charges for the periodic corrections.

Since Mulliken charges are computed from diagonal elements of

the Fock matrix, they depend only on the orbital coefficients.

The total energy can then be considered as a function of the

atomic positions, the orbital coefficients, and the Lagrange mul-

tipliers used to maintain the orthonormality constraints.42,43

Because the SCF equations minimize the energy as a function of

the orbital coefficients, we can compute the gradient without

needing to know how the orbital coefficients (or the Mulliken

charges) change with geometry. Gradients are calculated in the

usual way for a closed-shell Hartree–Fock wavefunction (details

are in section 30.5 of ref. 42 and eq. (22) of ref. 43), with the

simplification that the overlap matrix is independent of geometry

for these NDO models.

QM/MM Generalized Born

Support for QM/MM implicit solvent simulations is provided by

a generalized-born surface-area (GBSA) approach. Our imple-

mentation is based on the QM/MM compatible GBSA approach

developed by Pellegrini and Field.44 The QM energy, EQM, of

an implicitly solvated closed shell molecule being treated with a

semiempirical QM method of a type supported by Amber is

given by

EQM ¼ 1

2

X
lm

Plm
�
Hlm þ Flm

�þ Enuc þ Gpol þ GSA (24)

where Plm, Hlm, and Flm are the density, one-electron and Fock

matrices, respectively. l and m refer to the basis functions used

to expand the molecular orbitals, Enuc is the nuclear repulsion

energy between QM nuclei and Gpol and GSA are the polariza-

tion and surface area energies21

GSA ¼
XN
i¼1

riAi (25a)

Gpol ¼ � 1

2

1

ei
� 1

e0

� �XN
i¼1

XN
j¼1

qiqj

fij
�
rij
� (25b)

where N is the total number of atoms, Ai is the solvent accessi-

ble surface of atom i, ri is an empirical solvation parameter, ei

Figure 1. Flowchart illustrating the steps involved in the QM/MM

PME calculation process for a single molecular dynamics step.
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and e0 are the solute and solvent dielectric constants respec-

tively, qi is the charge on atom i, and fij is a function dependent

on the distance, rij, between atoms i and j. fij does not have a

unique functional form. In our implementation we use the form

proposed by Still et al.21

fij
�
rij
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rij2 þ aij2 exp � rij2

4aiaj

� �s
(26)

where ai is the effective Born radius of atom i. The calculation

of accurate Born radii is crucial to the effectiveness of the

GBSA method. Amber contains a number of Born radii parame-

ter sets that have been developed for classical simulations. All

of these approaches are supported in our QM/MM implementa-

tion. While some have noted that QM GBSA results can be

improved by specifically optimizing the radii for each QM Ham-

iltonian44 we do not provide any QM optimized radii sets with

Amber, however since these are defined during the construction

of the input file containing the molecule’s topology it is a simple

matter for the user to substitute the QM atom radii with radii of

their choice.

Utilizing eq. (25) for a QM calculation requires the determi-

nation of effective atomic charges to be used in place of qi and
qj which for MM calculations would typically be fixed partial

charges consistent with the force field being used. The simplest

approach is to use a Mulliken population analysis in the same

way as was employed for the PME calculations described above

eq. (21). Since for an accurate description of the solvation effect

on the electron density of the QM region and to be able to dif-

ferentiate eq. (25b) with respect to just rij it is necessary to mod-

ify the vacuum Fock matrix in a fashion equivalent to that

described earlier. This is achieved by adding terms of the fol-

lowing form to the diagonal elements of the vacuum Fock ma-

trix

DFll ¼ 1

ei
� 1

e0

� � XN
j2QM

Qj

fij
l 2 i (27)

Minimization of Eeff in eq. (3) with the additional term in eq.

(27) proceeds in exactly the same way as the vacuum case using

an iterative SCF approach. This yields a density matrix that is

self consistent with having been perturbed by the GB solvent

potential. The GB contributions to the derivatives can then be

calculated in exactly the same way as would be done for a clas-

sical simulation using the Mulliken charges from the self-con-

sistent density matrix in place of classical partial charges for the

QM atoms.

Extending the earlier description to a QM/MM system is con-

ceptually simple adding two extra terms to eq. (2) to give

Eeff ¼ EQM þ EMM þ EQM=MM þ Gpol þ GSA (28)

Since the surface area term GSA is independent of whether the

atom is a QM or MM atom so it can be evaluated independently

of the rest of the calculation. The polarization term is a function

of the QM charges but is pairwise additive and so can be rewrit-

ten as

Gpol ¼ � 1

2

1

ei
� 1

e0

� � XN
i2QM

XN
j2QM

QiQj

fij
þ
XN
i2QM

XN
j2MM

Qiqj
fij

 

þ
XN
i2MM

XN
j2MM

qiqj
fij

!
ð29Þ

The second term in brackets on the right hand side of the earlier

equation contains the interaction between QM atoms described

by Mulliken charges and MM atoms described by classical par-

tial charges. This expression means that the expression for modi-

fying the Fock matrix terms to account for the polarization

energy, eq. (28), must be extended to include the sum over all

atoms, both QM and MM. Since the MM charges remain fixed

during the SCF procedure so the contributions to the Fock ma-

trix due to the MM atoms can be evaluated once before entering

the SCF procedure while the contributions due to the QM atoms

must be reevaluated on each step of the SCF.

The QM/MM Boundary

The way in which nonbonded interactions between the QM and

MM parts of a system are handled in sander v9’s hybrid QM/

MM potential was described in the previous section. This, how-

ever, only deals with situations where there are no covalent

bonds between the QM and MM regions. In many simulations it

is necessary to have the QM/MM boundary cut covalent bonds.

In this situation a number of additional approximations have to

be made. Many methods have been proposed for dealing with

this problem, that generally fall into three classes. These classes

include capping potential, or pseudo bond methods45 which use

an element of fictitious type to ‘‘cap’’ each bond between the

QM and MM regions; hybrid-orbital approaches, which employ

either hybrid or localised frozen orbitals on the QM atom of the

QM-MM covalent pair46,47 and the link atom approach.

In sander v9, we use the link atom approach. First introduced

by Singh and Kollman13 this method has found widespread use

in QM/MM calculations with a number of variations being

developed, including those by Bersuker et al.48 and Morokuma

and Maseras.49 In this approach a link atom, which is typically,

but not always, a hydrogen, is placed along the bond between

the QM and MM region at a suitable distance (�1 Å) to satisfy

valence requirements. The link atom is included in the QM part

of the calculation as a regular QM atom. It shares the same pair

list for QM/MM interactions as real QM atoms. Such an

approach does nothing to maintain the bond between the QM

and MM regions and so this must be dealt with classically in the

MM part of the calculation.

There are a number of ways to implement a link atom

approach that deal with both the way the link atom is positioned,

the way the forces on the link atom are propagated, and the way

nonbonding interactions around the link atom are treated. We

have implemented a link atom approach that is similar to that

used by Dynamo10 where the link atom is treated as part of the
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covalent bond between the QM and MM atoms bonded across

the interface. Each time an energy or gradient calculation is to

be done, the link atom coordinates are automatically generated

from the coordinates of the atoms making up the QM-MM cova-

lent pair. The link atom is placed along the bond vector joining

the QM and MM atoms using the formula:

�rL ¼ �rQM þ dL�QM

�rMM � �rQM���rMM � �rQM
�� (30)

where �rL, �rQM, and �rMM are the position vectors of the link

atom, QM atom and MM atom respectively and dL2QM is a user

defined constant specifying the QM to link atom bond length.

The default link atom is a hydrogen atom but this can be

changed by the user.

Once the QM gradient has been calculated the force on each

link atom is redistributed between the QM and MM link pair by

application of eq. (31) and the corresponding y and z component

forms.

F0
x QM ¼ � @Eð�rLÞ

@xQM
¼ �rLE � @�rL

@xQM
¼ �FL � @�rL

@xQM

F0
x MM

¼ �FL � @�rL
@xMM

(31)

where F0
xQM

and F0
xMM

are the x components of the force on the

QM and MM atom respectively due to the link atom, FL is the

force vector on the link atom due to the QM potential, and the

partial derivatives can be expressed as:

@�rL
@xQM

¼ 1� dL�QM

dMM�QM

� �
�iþ dL�QM

�
xMM � xQM

�
dMM � QM3

�
�rMM � �rQM

�
@�rL
@xMM

¼ dL�QM

dMM�QM

�i� dL�QM

�
xMM � xQM

�
dMM�QM

3

�
�rMM � �rQM

� ð32Þ

where �i is the Cartesian x unit vector and dMM 2 QM 5 |�rMM 2
�rQM|.

There are a number of advantages to this link atom approach.

The first is that constraining the link atom position to the QM-

MM link pair bond vector does not introduce extra degrees of

freedom into the calculation. This makes temperature and pres-

sure control easier, and also means that statistical averages and

fluctuations can be directly compared between pure MM and

hybrid QM/MM simulations. The second is that the entire link

atom procedure is transparent to the user. The user simply

selects which atoms are to be treated quantum mechanically and

sander then determines what adjustments need to be made to

ensure the total system charge is conserved, which bonds are to

be broken, how many link atoms are needed, and where they are

to be placed. The third is that the link atom position need only

be known by the QM part of the code and as such there is no

need for special restart file formats or extension of the coordi-

nate, force or velocity arrays. This makes the implementation

significantly easier and reduces the potential for coding errors. A

fourth advantage is that the definition of the link atom position

(30) ensures that the link atom is always in the correct position

each time the QM potential is calculated. Our experience shows

that this greatly improves the convergence behavior and stability

of QM/MM MD simulations and allows time steps of the same

magnitude as are typically used in classical MD simulations.

The remaining details of how the QM-MM boundary is

treated are as follows: the MM bond terms between QM and

MM atoms are calculated classically using the Amber force field

parameters, as are any angle or dihedral term that include at

least one MM atom. The Lennard–Jones interactions between

QM-MM atom pairs are calculated in the same way as described

in the section above with exclusion of 1–2 and 1–3 interactions

and scaling of 1–4 interactions as in the Amber force field.50

What remains are the electrostatic interactions between QM and

MM atoms around the region of the link atom. A number of

schemes have been proposed including simply neglecting all

charges that are within three bonds of a QM atom or alterna-

tively scaling the charges. However, we have found that all of

these approaches are unsatisfactory and so in Amber we have

chosen to use the method advocated by Field et al.,4 where all

electrostatic interactions between all MM atoms (excluding MM

atoms directly bonded to a QM atom) within the user specified

cutoff distance of any QM atom are calculated for all QM

atoms, including the link atom, without exclusion or scaling.

The electrostatic interactions of the MM link pair atom are

replaced by those of the link atom, whereas the VDW interac-

tions remain with the MM link pair atom. The link atom is

treated in the same way as the ‘‘real’’ QM atoms, sharing the

same nonbond list as the other QM atoms. Test calculations

have shown that this approach gives a significantly better distri-

bution of the charge on QM atoms around the QM-MM interface

than is observed if the QM link atom interacts only with other

QM atoms as was the case with the Amber v8 implementation.

Figure 2 illustrates several alternatives for a tryptophan dipep-

tide in a sphere of water. Here it can be seen that for case 3 the

link atom charge remains stable and close to that of the other

CB hydrogens. In the alternative cases the link atom charge fluc-

tuates significantly because of an inbalance of the MM charge

field experienced by the link and non-link QM atoms.

When adding link atoms to a QM/MM system it is essential

that the total charge of the system be maintained. Charge con-

servation with link atoms in our implementation is achieved by

one of two methods. Any difference in charge between the QM

region and the parameterized (RESP) charges of the MM atoms

that are replaced by QM atoms can either be distributed to the

MM atoms surrounding the MM link atom pair or can be distrib-

uted evenly across all the remaining MM atoms, the later option

being the default behavior. Since the integer charge of the QM

region is determined at runtime so this correction can be done

as part of the initial simulation setup.

To highlight the importance of rigorous charge conservation

in link atom schemes, and to facilitate a comparison between

our link atom scheme and the various QM/MM frontier

approaches used in other QM/MM implementations we studied

the gas phase deprotonation energies of a series of aliphatic

alcohols and carbonic acids as was conducted by König et al. in

their evaluation of various QM/MM frontier treatments with

SCC-DFTB.51 We used the exact methodology they used to gen-

erate Table 3 in their paper. To facilitate a direct comparison

with their results we used CHARMM parameters and charges

for the MM region. As described earlier Amber 9 offers two dif-
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ferent options for dealing with charge conservation. We tested

the ability of both methods to reproduce the pure QM gas phase

deprotonation energy as well as testing the effects of not rigor-

ously conserving charge. Table 1 shows the results for SCC-

DFTB and PM3-PDDG. Failure to ensure that the total system

charge is conserved, somewhat analogous to the single link atom

(SLA) approach in König et al.’s51 paper, leads to significant

errors in the predicted deprotonation energies. However, our link

atom method, when coupled with charge conservation performs

very well with errors that are comparable with those observed

for the divided frontier charge (DIV) approach that König

et al.51 found to give the best overall performance in their study.

Energy Conservation and Testing

Single Point Accuracy

One problem we encountered when attempting to verify the ac-

curacy of our QM/MM implementation was the inconsistency in

energies reported from various semi-empirical QM implementa-

tions. For a system as simple as N-methyl acetamide (NMA) in

gas phase, MOPAC v6.0,17 MOPAC 2007,52 Gaussian 2003,53

Dynamo v2.0,10 and CHARMM c31b29 all yield different values

for the predicted heat of formation (Table 2). These differences

have been tracked down to inconsistencies in values of certain

constants, sometimes even within a single code. Unlike ab initio
methods, which can be expressed in atomic units that are inde-

pendent of conversion factors, semi-empirical matrix elements

are defined through fitted parameters that have experimental

units (usually in electron Volt). In our QM implementation we

have (somewhat arbitrarily) elected to use the same constants

and conversion factors that are used in Dynamo. Our code will

therefore exactly reproduce the energies reported by Dynamo.

The supplemental material shows how to modify CHARMM,

Mopac 6.0 and Gaussian so that they will reproduce the Amber

or Dynamo QM energies to 10 significant figures.

Gradient Accuracy

People running classical force field simulations can generally

expect that the forces used in MD are accurately the gradients

of the potential energy so that a NVE simulation should yield

constant total energy with respect to time. However, this has of-

ten not been true for QM/MM simulations since the QM portion

of a QM/MM calculation uses an iterative SCF procedure, the

forces are only sufficiently accurate to conserve energy if the

difference in energy between subsequent SCF steps is converged

to the order of around 1 3 1028 to 1 3 1029 kcal/mol.

We tested the ability of sander v9, sander v8, ROAR v2.1,

CHARMM v31b2, and Dynamo v2 to simulate the NVE ensem-

ble for a simple QM system undergoing dynamics by running a

2.5 ns QM MD simulation of NMA in gas phase. We con-

structed the same simulation in all the codes. Starting from a

pre-equilibrated structure of NMA at 300 K we ran 5,000,000

steps of molecular dynamics in a single run in gas phase with

no thermostat and an integration time step of 0.5 fs, yielding 2.5

ns of simulation. Since ROAR would not run without a thermo-

stat we selected the Nose Hoover Chain Thermostat with 1 chain

and 1 thermostat per chain and a thermostat mass of 1.0 3 1016.

Such a thermostat mass is sufficiently large that it should ap-

proximate the NVE ensemble over the timescale of the simula-

tion. The energy and forces at each step of MD were calculated

using the PM3 semi-empirical Hamiltonian and the requested

SCF convergence criteria was set at 1.0 3 1029 kcal/mol. No

cutoffs were used in the calculation and no atoms had their

motions restricted or damped in any way.

Figure 3 shows the total system energy (SCF energy 1 ki-

netic energy) for each of the simulations as a function of time.

Both sander v9 and DYNAMO v2 give the same answer and

conserve energy to within 0.02 kcal/mol over the full 2.5 ns

simulation. ROAR v2.1 and CHARMM v31b2 show similar

behavior, with a gradual cooling of the system as kinetic energy

is slowly lost due to inaccuracies in the gradients. sander v8 ini-

tially looses energy at a very rapid rate and then shows an ab-

rupt jump in the energy after 136,000 steps of MD. This is fol-

lowed by continued loss of energy and sudden, seemingly ran-

dom, jumps in energy for the rest of the simulation; (we still do

not understand the origins of this odd behavior). The CHARMM

simulation on the other hand simply cooled down to 0.1 K over

1.5 ns before crashing with a segmentation fault.

The sander v8, ROAR v2.1 and CHARMM v31b2 results are

very worrying since they imply that the gradients are inaccurate

even with a stringent SCF convergence criteria. It would appear

that of the five codes tested only sander v9 and DYNAMO v2

have accurate gradients. The analytical gradients in our sander
v9 implementation agree well with numerical gradients: for an

Figure 2. Plot showing the link atom Mulliken charge as a function

of time for a MD simulation of tryptophan dipeptide in a 20 Å ra-

dius TIP3P solvent cap with no cutoff. Inset shows the QM atoms

and the bond vector along which the single link atom was placed.

The charge for three different link atom methods is shown. Case 1

is where the link atom interacts only with QM atoms and the MM

link pair atom (Ca) interacts with all QM atoms except the link

atom. Case 2 is similar to case 1 except that the interaction between

the MM link pair atom and the non-link QM atoms is also excluded.

Case 3 is the method currently implemented in Amber 9 where by

the link atom interacts with both QM and MM atoms and MM link

pair atoms are excluded from all electrostatic interactions.
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SCF and density matrix element convergence of 1029 kcal/mol

we see an RMS gradient error, for the pure QM gas phase NMA

system discussed above, of approximately 1.1 3 1028 kcal/mol/

Å. This compares favorably with the error in the classical MM

force field gradients of approximately 0.5 3 1029 kcal/mol/Å.

The remaining error reflects the limitations of the finite differ-

ence approach, not actual errors in the MM gradients.

The increased accuracy of the gradients in our new QM/MM

implementation is due in part to our careful rewriting of the

MOPAC code. This included centralizing all of the constants

and conversion factors and ensuring, unlike in MOPAC v6, as

illustrated in the supplementary material, that only one value of

each constant was used throughout the code and that all con-

stants and conversion factors are self consistent. Additionally

there are some conditions where exponentials are vanishingly

small, and so can be skipped for performance reasons, and also

conditions when rotating from local frames to molecular frames

in which certain vectors can be assumed to be parallel to an axis

when they are very close to that axis. We have ensured that the

checks used in both the energy and derivative sections of the code

are consistent. We have also ensured that pseudo diagonaliza-

tions54 of the Fock matrix are only done during the middle part of

the SCF. By switching to full diagonalisations for the last few

SCF cycles we have ensured that our gradients are accurate. Fail-

ure to do this gives analytical gradients that at best have an

RMSD of 1 3 1024 kcal/mol/Å from the numerical gradients.

Our link atom approach, as described earlier, also conserves

energy when run in the NVE ensemble, as illustrated in Figure 4.

This shows the total energy, classical potential energy 1 scf

energy 1 kinetic energy, for a 10 ns simulation of alanine

dipeptide in which the central part of the molecule was treated

quantum mechanically using the PM3 Hamiltonian, and the re-

mainder of the molecule was treated using the classical FF99

force field.55 Two hydrogen link atoms were added at a distance

Table 1. Predicted Gas Phase Deprotonation Energies, as a Function of the Charge Conservation Approach,

for QM Fragments Embedded in an MM Environment Using Amber 9’s Link Atom Approach (in kcal/mol).a

Model

SCC-DFTB PM3-PDDG

Pure QMb NAc NNc ALLc Pure QMb NAc NNc ALLc

A. CH3��OH 397.1 387.9

B. CH3��CH2��OH 397.0 368.2 397.7 401.2 383.9 355.5 384.6 388.6

dev 228.8 0.7 4.2 228.4 0.7 4.7

C. CH3��CH2��CH2��OH 395.5 382.2 404.4 400.8 382.9 369.5 391.6 387.8

dev 213.3 8.8 5.2 213.4 8.7 4.9

D. CH3��CH2��CH2��CH2��OH 381.7 403.9 397.9 384.3 369.1 391.2 385.1

dev 213.1 9.0 3.0 215.2 6.9 0.8

E. CH3��CH2��OH 394.9 383.9

F. CH3��CH2��CH2��OH 395.5 370.3 397.9 397.1 382.9 358.5 384.5 383.9

dev 225.2 2.3 1.6 224.4 1.6 1.0

G. CH3��CH2��CH2��CH2��OH 394.9 380.8 399.3 395.8 384.3 370.3 384.6 385.0

dev 214.1 4.4 1.0 214.0 0.3 0.7

H. CH3��CH2��CH2��CH2��CH2��OH 394.6 380.6 399.1 393.9 384.0 370.1 387.8 383.2

dev 214.0 4.5 20.7 213.9 3.8 20.8

I. CH3��COOH 366.3 349.2

J. CH3��CH2��COOH 365.5 338.4 363.5 366.2 348.8 323.5 345.5 349.0

dev 217.1 22.0 0.7 225.3 23.3 0.2

K. CH3��CH2��CH2��COOH 364.9 349.4 369.5 366.4 348.7 333.2 352.1 349.4

dev 215.5 4.5 1.5 215.5 3.4 0.8

L. CH3��CH2��CH2��CH2��COOH 364.2 349.2 368.0 362.8 348.1 332.9 350.6 345.9

dev 215.1 3.7 21.4 215.2 2.5 22.2

M. CH3��CH2��CH2��CH2��CH2��COOH 364.4 349.1 368.2 361.4 348.0 332.8 350.6 344.6

dev 215.3 3.8 23.0 215.2 2.6 23.4

aThe QM region is shown in the bold faced type. A single link atom is added at the bond crossing the QM/MM

boundary. Deviations are shown relative to the entire molecule computed using a pure QM treatment. For SCC-

DFTB we used a value of 141.8 kcal/mol for the energy of an isolated proton51 and for PM3/PDDG we used a value

of 367.2 kcal/mol57.
bThe Pure QM column indicates a calculation encompassing the entire molecule.
cThe different link atom charge conservation algorithms, with the corresponding Amber 9 control keyword, are as fol-

lows:

NA (adjust_q5 0), No adjustment is made to preserve charge.

NN (adjust_q 5 1), Nearest Neighbor. The charge correction is applied to the nearest nlink MM atoms to the MM

atoms that are replaced electrostatically by link atoms.

ALL (adjust_q 5 2), Default behavior. The charge correction is divided equally amongst all MM atoms (except for

those adjacent to link atoms).
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of 1.00 Å, one along each of the C��N bonds that crossed the

QM/MM boundary. All other aspects of the simulation were the

same as the NMA calculation described above. This is not an

ideal choice of QM/MM boundary, but is used here to test the

accuracy of the gradients in our implementation. It can be seen

from Figure 4 that energy is successfully converged with a

change of only 0.03 kcal/mol of energy over the entire 10 ns

simulation.

Performance

A common problem that is encountered by researchers carrying

out QM/MM simulations is the excessive computational resour-

ces such calculations can demand. Our trials with sander 8

showed that performance was indeed an issue as illustrated by

Tables 3 and 4. The sander 8 QM/MM implementation will also

not run in parallel and so it is not possible to increase the calcu-

lation speed by going to large numbers of processors.

Inspection of the code revealed that the poor performance

was due to outdated programming practices such as the use of

computed GOTO’s as well as inefficient programming techni-

ques such as poor use of memory, branching within loops and

reading and writing integral data to disk at every step. To

address the performance issues in sander 9 we have completely

rewritten the code using current programming paradigms as well

as more modern machine resource expectations.

Tables 3 and 4 give performance comparisons between the

five main codes we have discussed in this article. Table 3 gives

timings for malachite green (50 atoms) in gas phase for 1000

steps of 1 fs each and a SCF convergence criteria for all pro-

Table 2. SCF Energies Reported by Different Semi-Empirical Packages for Identical Single Point Energy

Evaluations of N-Methyl Acetamide.

Program AM1 ESCF (Kcal/mol) PM3 ESCF (Kcal/mol)

AMBER v9.0 234.92134208 244.35423579

CHARMM c33b1 234.97754796 (234.92134208*) 244.40827788 (244.35423579*)

MOPAC v6.0 234.82651486 (234.92134209*) 244.27659532 (244.35423579*)

MOPAC 2007a 234.90320 244.39969

Dynamo v2.0 234.92134208 244.35423579

Gaussian 03 Rev C.01 234.97477068b (234.92134208*) 244.40566821b (244.35423579*)

aSource code not available so higher precision printing was not possible.
bWith iop(4/22 5 100) set.

*Values in brackets show energy reported after code changes described in the supplemental material.

In all cases the SCF convergence was set to 1.0 3 1028 Kcal/mol and the input structure was identical.

Figure 3. Total energy vs. time for a pure QM MD simulation

(PM3) of NMA at 300 K in the NVE ensemble. The results from

each program are labelled. The Amber v9 and Dynamo v2 results

were the same and so overlap on the plot. (Inset shows zoom of

Amber v9 and Roar 2.1 results over the first 500 ps.)

Figure 4. Total energy vs. time for a combined QM/MM simulation

with link atoms of Alanine Dipeptide at 300 K in the NVE ensem-

ble using Amber v9. Inset shows the QM and MM partitioning.

Hydrogen link atoms were placed at a distance of 1 Å from each

nitrogen along the bond vector that was broken.
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grams of 1 3 1028 kcal/mol. As can be seen from this data our

newly written QM implementation is significantly faster than the

other codes. Table 4 shows a similar trend with timings for a

QM/MM simulation of malachite green in a solvent cap of

TIP3P water. Here the total system size was 5985 atoms, with

50 treated quantum mechanically and 5935 treated classically.

Classical-only simulation times (using the gaff force field56 for

the solute) are also shown for comparison. Here the calculation

was run with a time step of 1 fs for 1000 steps. The SCF con-

vergence was set to 1 3 1028 kcal/mol in all codes and a total

of two simulations were run; a classical only simulation with a

non-bonded cutoff of 14 Å and the equivalent QM/MM simula-

tion. Again our new implementation is significantly faster

achieving over 218 ps/day (437 ps/day if shake is used). This

performance can also be somewhat improved by running simula-

tions in parallel across several processors.

This increase in performance has been achieved through a

number of routes, but has not been achieved by sacrificing accu-

racy or introducing any new approximations. One way we have

done this is by dynamically adjusting the amount of memory

used to the available memory on the machine. When the

MOPAC code, from which all of the programs we have com-

pared have their origins, was written memory was very sparse

and so the atom-atom distances, one and two electron repulsion

integrals, etc, were typically recalculated on the fly during the

SCF procedure and the gradient evaluation. This is no longer the

case. Even a basic workstation now has in excess of 1 GB of

ram. With this in mind we have introduced a number of per-

formance enhancing storage options in sander 9. By default the

code will store as much as possible in memory. This includes

storing the one electron integrals, both QM-QM and QM-MM in

memory. sander v8 and ROAR write these to disk and then read

them back in when needed whereas DYNAMO recalculates

them on the fly. We also store many other calculation elements

in memory whenever possible, including the two electron inte-

grals, basis set expansion data, precomputed parameters and as

many equations as possible that depend on the distance between

atom pairs. In this way we do each calculation only once. All of

these memory storage options are controllable so that the user

may choose to save memory at the expense of performance.

We have also significantly improved performance by modern-

izing the code. We have modified our array storage to try to

ensure that memory accesses are almost always linear. Combin-

ing several arrays into one ensures that the computer can access

the next element that is required for a calculation by simply

incrementing a pointer rather than fetching the value from a dis-

tant memory location. This maximizes the number of cache hits

that are achieved and also allows the cpu to pre-fetch large

blocks of memory efficiently.

Finally we have streamlined the code as much as possible.

All branching is done outside of loops whenever possible and

loops have been split so that we do not mix integer and floating

point arithmetic within the same loop. This allows inner loops to

be unrolled by the compiler and also allows for easy vectoriza-

tion to take advantage of special hardware such as the SSE2

registers on Intel P4 chips.

We have also improved performance by writing the code for

the purpose of doing QM/MM MD. In this way we have included

only those options that are needed for doing MD simulations.

This assumption also allows other enhancements to be made. For

example the difference in structure between subsequent MD steps

will generally be small allowing the density matrix from the pre-

vious step to be used as the starting point for the next step’s SCF

procedure. This greatly accelerates convergence of the SCF.

For explicit solvent periodic boundary simulations Table 5

shows a comparison of our new QM/MM PME implementation

and the original QM/MM Ewald implementation based on the

work of Nam et al.40 In both cases the MM/MM interactions were

calculated using PME. It can be seen that our PME implementa-

tion is significantly faster than the Ewald implementation. At

12,612 atoms it is over 2.3 times faster and this ratio grows as the

total number of atoms in the simulation increases. Timings for the

equivalent purely classical calculation are shown for comparison.

The QM/MM PME implementation is also significantly more effi-

cient in terms of memory usage. The LADH simulation with the

QM/MM Ewald method requires more than 1100 MB of memory

while the PME version requires only 17.6 MB.

The major remaining bottleneck is the matrix diagonalization

step which while it has been optimized is currently not parallel-

ized. This ultimately limits parallel scalability to approximate 8

cpus depending on the size of the QM and MM regions. We are

Table 3. Wallclock Time in Seconds for a 1000 Step Pure QM/MD

Simulation of Malachite Green (50 atoms) in Gas Phase on a Single

Processor of an Intel Pentium-D 3.2 Ghz Machine with 4 GB of 667

MHz DDR2 Memory.

Program Time (s) PS/Day

sander v9 120.4 717.8

sander v8 473.2 182.6

ROAR v2.1 548.3 157.6

DYNAMO v2.0 355.9 242.8

CHARMM v31b2 497.0 173.8

Times are averages over 10 runs. Simulation details: No cutoff, PM3,

1 fs time step, no shake, no coordinate file, SCF convergence 5 1.0 3
1028 Kcal/mol. Intel ifort v9.1.039 was used to compile all codes.

Table 4. Wallclock Time in Seconds for 1000 Steps QM/MM/MD and

Classical Simulations of Malachite Green (QM, 50 atoms) in 1978

Molecule TIP3P Water Sphere (MM, 5935 atoms) on a Single Processor

of an Intel Pentium-D 3.2 Ghz Machine with 4GB of 667 MHz DDR2

Memory.

Program MM Only (s) QMMM (s) Ratio QMMM/MM Only

sander v9 189.5 395.4 2.09

sander v8 222.0 2349.8 10.58

ROAR v2.0 213.8 4123.6 19.29

DYNAMO v2.0 333.2 845.0 2.54

CHARMM v31b2 296.4 1366.9 4.61

Times are averages over 10 runs. Simulation details: 14 Å cutoff, 1 fs

time step, constant temperature (300 K), no shake, SCF convergence 5
1.0 3 1028 Kcal/mol. Intel ifort v9.1.039 was used to compile all codes.
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working to remove this serial bottleneck in future versions of

the software.

Overall our new QM/MM implementation is sufficiently fast

that a portion of the system can be treated quantum mechani-

cally without an excessive overhead in computing time. For

example a periodic boundary simulation of LADH in TIP3P

water involves a total of 76,723 atoms. Choosing to treat the

coenzyme, NADH, in this system using the PM3 Hamiltonian

(71 atoms) requires only 1.87 times more cpu time with respect

to doing the calculation purely classically (Table 5).

Conclusions and Planned Development

In this article we have discussed our new semi-empirical hybrid

QM/MM routine that forms part of the sander v9 module in

Amber v9. This implementation is a significant improvement

over previous code. We have greatly simplified the way in

which QM/MM simulations are setup and run such that the user

now simply adds a few extra options to their normal input file.

If a simulation is setup to run in sander using a classical MM

force field then it is a trivial matter to have part of this system

treated quantum mechanically. A rewrite of the QM portion of

the code has significantly improved the calculation speed and at

the same time corrected deficiencies in the gradient accuracies

of previous codes. Our new QM/MM implementation can suc-

cessfully conserve energy and so does not need to rely on a ther-

mostat to correct these deficiencies. The gradient accuracy and

the enhanced computation speed has been achieved simply by

careful coding, we have not implemented any extra approxima-

tions or accelerated convergence options. As such there is no

reason why these improvements could not be added to other

semi-empirical QM/MM codes with minimal effort and indeed

work is currently underway to integrate this code into

CHARMM.

Our implementation supports either pure QM or QM/MM

simulations using either the PM3, PDDG/PM3, PM3CARB1,

AM1, MNDO, PDDG/MNDO, and DFT/B Hamiltonians. We

have also implemented a complete treatment of long range elec-

trostatics using a QM/MM modified PME method derived in this

article as well as a QM/MM compatible Generalized Born model

based on the approach described by Pellegrini and Field.44
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