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ABSTRACT: The calculation of pKa values for ionizable sites in proteins has been traditionally based on
numerical solutions of the Poisson-Boltzmann equation carried out using a high-resolution protein structure.
In this paper, we present a method based on continuous constant pH molecular dynamics (CPHMD)
simulations, which allows the first-principles description of protein ionization equilibria. Our method
utilizes an improved generalized Born implicit solvent model with an approximate Debye-Hu¨ckel screening
function to account for salt effects and the replica-exchange (REX) protocol for enhanced conformational
and protonation state sampling. The accuracy and robustness of the present method are demonstrated by
1 ns REX-CPHMD titration simulations of 10 proteins, which exhibit anomalously large pKa shifts for
the carboxylate and histidine side chains. The experimental pKa values of these proteins are reliably
reproduced with a root-mean-square error ranging from 0.6 unit for proteins containing few buried ionizable
side chains to 1.0 unit or slightly higher for proteins containing ionizable side chains deeply buried in the
core and experiencing strong charge-charge interactions. This unprecedented level of agreement with
experimental benchmarks for the de novo calculation of pKa values suggests that the CPHMD method is
maturing into a practical tool for the quantitative prediction of protein ionization equilibria, and this, in
turn, opens a door to atomistic simulations of a wide variety of pH-coupled conformational phenomena
in biological macromolecules such as protein folding or misfolding, aggregation, ligand binding, membrane
interaction, and catalysis.

Most proteins contain side chains that can gain or loose
protons in response to environmental pH conditions (1). The
protonation-deprotonation process leads to a change in the
charge state and hence can play a critical role in the stability
and function of the protein. For example, acid-induced
denaturation of globular proteins can be explained by a net
increase in the level of intramolecular repulsion among
positively charged residues due to the protonation or charge
neutralization of the acidic carboxylate groups (2). The

ionization equilibrium also plays a vital role in the catalytic
function of enzymes. A prominent example is the direct
involvement of active site ionizable side chains, frequently
of aspartates, glutamates, or histidines, in the generalized
acid-base reactions of enzymes (3). The pH-dependent fibril
formation of amyloidogenic proteins highlights another
aspect of the functional role of ionization states in proteins
(4). Finally, life depends on pH, which is largely regulated
through the ionization states of protein histidine residues in
our body (5).

The pH condition under which a particular ionizable side
chain of the protein exists in equal populations of protonated
and deprotonated states gives rise to the pK1/2 or pKa value
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of the side chain. In principle, a unique pKa, termed the
intrinsic pKa, can be defined for an isolated ionizable side
chain. In practice, however, due to solubility issues, an
ionizable group is placed in a model compound or peptide,
resulting in the so-called model compound pKa and standard
or normal pKa (3). In a protein environment, some ionizable
side chains can have substantially perturbed pKa values due
to desolvation effects, charge-charge interactions, and charge-
dipole interactions. The experimental determination of
strongly perturbed pKa’s is nontrivial because the variation
in pH may induce a large conformational change or even
unfolding of the protein. Over the past decade, Poisson-
Boltzmann (PB) equation-based methods have become
widely used in the theoretical prediction of protein pKa’s.
These methods yield predictions with about 1 pKa unit root-
mean-square deviation (rmsd) from experimentally observed
pKa shifts [see a recent review by Bashford (6)]. Most
recently, an empirical method that yields results in compa-
rable agreement with experiment has been introduced (7).
These methods, however, require the knowledge of a high-
resolution structure of the target protein, since they do not
allow for conformational flexibility (6). Although tuning the
effective protein dielectric constant (8) and/or explicitly
including multiple conformations (9, 10) in the PB-based
methods can modestly offset the lack of local reorganization
of polar side chains, these methods break down in cases
where conformation has a significant influence on pKa (6).

In principle, the effect due to the flexibility of proteins
can be addressed by more detailed or more realistic models
such as the protein-dipole Langevin dipole method (11) and
the recently described microscopic methods that incorporate
protonation-deprotonation events into the molecular dynam-
ics simulation via Monte Carlo (MC) sampling or coupling
to a proton bath [see a recent review by Mongan et al. (12)].
The latter approach, termed constant pH molecular dynamics
(PHMD), can be applied, in principle, not only in pKa

predictions for proteins with known structure but also in pH-
dependent conformational dynamics and first-principles
protein folding studies. One particularly interesting applica-
tion area, inaccessible with the conventional fixed protonation
state simulation, is to explore pH-induced partially folded
conformational states, which has been gaining much attention
in the pursuit of understanding the disease-related protein
misfolding and aggregation phenomena.

Among all PHMD methods, theλ-dynamics (13) and
generalized Born (GB) implicit solvent-based continuous
constant pH molecular dynamics (CPHMD) method has
shown particularly great promise due to its speed, stability
of the dynamics trajectory, and faster convergence of
protonation states relative to the MC-based discrete methods
(14, 15). The extension of the CPHMD method to explicitly
include proton tautomerism has allowed the prediction of
pKa shifts with correct signs and a mean absolute error of
<1.5 units for the carboxylate, histidine, andR-amino side
chains in two benchmark proteins (15). Our previous work,
however, also indicated two areas for further improvement
(15). First, the overstabilization of salt bridge interactions
due to the underlying GB model led to a systematic
underestimation of pKa’s for carboxylate side chains. Second,
the lack of extensive conformational sampling led to random
errors as large as 0.5 pKa unit in the model compound
titrations. The latter problem has been found to be common

for the class of methods that utilize a direct coupling between
conformational and protonation equilibria in a microscopic
fashion (12).

Salt ions are ubiquitous in biological environments. For
example, Na+ is the primary electrolyte that regulates the
extracellular water level in the body. Under normal condi-
tions, human plasma contains a Na+ concentration of 136-
145 mM. K+, on the other hand, is the primary cation that
helps pump the byproducts of cellular processes out of the
cell. Salt ions are almost always present in the experimental
studies of proteins. In particular, protein pKa measurements
are conducted in the presence of salt concentrations ranging
typically from 50 to 300 mM. The influence of salt ions on
the pKa’s of a protein occurs mainly through the Debye-
Hückel screening of charge-charge interactions, binding of
counterion to specific sites, and a change in water structure.
The former can be quite large for a titrating side chain
forming a solvent-exposed salt bridge or hydrogen bond
contact with another charged or polar side chain, a scenario
which occurs frequently for carboxylate side chains that
exhibit depressed pKa’s (15). Thus, accounting for Debye-
Hückel screening in CPHMD simulations will allow us to
fine-tune theoretical predictions of protein pKa’s and improve
quantitative comparison with experiment.

In this paper, we will address the aforementioned salt
bridge and convergence problems in the CPHMD method
by exploiting the newly improved GB parametrization, which
better captures the balance between the solvation and
intramolecular forces (16), and through the use of the replica-
exchange (REX) enhanced sampling technique (17), which
has been widely applied in first-principles protein folding
studies (18). Also, we will account for salt effects in the
CPHMD simulation by employing a linearized Debye-
Hückel screening approximation in the GB solvation calcula-
tion, which has been shown to reproduce salt dependence in
PB calculations (19). To examine the accuracy and robustness
of the current methodology, CPHMD titration simulations
are carried out for 10 proteins, which have experimentally
characterized pKa’s for the carboxylate and histidine side
chains and exhibit anomalously large shifts with respect to
the model compound values. The major goal of this work is
to demonstrate that the CPHMD method has matured into a
practical tool for quantitative first-principles prediction of
ionization equilibria in proteins.

METHODS

REX-CPHMD.Replica-exchange (REX), also called paral-
lel tempering, is a generalized ensemble sampling technique
that allows an increased rate of barrier crossing on the
potential energy landscape through random walks in the
temperature space (17). In a REX simulation, an ensemble
of replicas is simulated over an exponentially spaced
temperature range. The replicas adjacent in temperature are
allowed to swap or exchange configurations according to
the Metropolis criteria (17). Although a rigorous assessment
of the computational acceleration in a REX simulation
relative to the conventional canonical simulation has not yet
been made, many applications in protein folding simulations
have emerged (18). We make use of REX as a more efficient
conformational sampling protocol to improve the sampling
of protonation states and hence the convergence of CPHMD
simulations.
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The CPHMD method (14, 15) is an extended Hamiltonian
approach, where a set of titration coordinates is propagated
simultaneously with the spatial coordinates. The linear
attenuation of electrostatic and van der Waals interactions
by the titration coordinates enables a coupling between the
conformational and protonation states. Since the temperature
dependence of an equilibrium constant is small and not of
our interest, we assume that the change in pKa at different
temperatures is solely an effect of heat-induced conforma-
tional transitions (unfolding). Thus, the REX algorithm can
be implemented for CPHMD simulations in a straightforward
fashion such that both spatial and titration coordinates of
adjacent replicas are subject to swapping with the appropriate
temperature rescaling of the free energy of deprotonation
for the model compound [ln 10kBT(pKa-pH)]. We note that
it is straightforward to couple both temperature and pH in a
two-dimensional version of the REX protocol. Such an
approach, although likely to further improve the convergence
of pKa calculations, is not explored here.

Calculation of pKa Values. The pKa’s of proteins were
computed by fitting the unprotonated fractions (S) obtained
from REX-CPHMD simulations at various pH values
(typically, pH 2, 4, 6, and 8) to the generalized Henderson-
Hasselbach (HH) equation:

wheren is the Hill coefficient. The deviation of the value of
n from unity reflects the degree of cooperativity (coupling)
between groups that interact and ionize over the same pH
range. The analytic functions of the potential of mean force
(PMF) for the protonation of model compounds were derived
following the procedure described in our previous work (15)
using the following standard pKa’s (20, 21): 4.0 for aspartate,
4.4 for glutamate, 3.8 for C-carboxyl, 7.5 for N-amino, 8.5
for cysteine, and 6.6 and 7.0 for Nδ and Nε titrations of
histidine, respectively.

Modeling Salt Effects.The Debye-Hu¨ckel screening of
charge-charge interactions is taken into account for low salt
concentrations in the current GB model (22) by scaling the
solvent dielectric constantε by the factore-κr, whereκ2 )
1/λ2 ) 8πq2I/ekT, λ is the Debye-Hückel length, andI is
the ionic strength of the solution (19). Thus, the solvation
energy becomes

whererij is the distance between atomsi andj, qi andqj are
the respective partial charges, andRi andRj are the respective
effective Born radii, which can be roughly interpreted as the
distances from the respective atoms to the dielectric bound-
ary. The factorF is a parameter that is typically chosen to
be 4. Thus, the net effect of Debye-Hu¨ckel screening is to
increase the self-solvation energies of charged side chains
and to weaken the electrostatic interactions between them.

pKa’s of Buried Residues.In the GBSW model (22), the
underlying implicit solvent model in the current simulation,
the dielectric boundary is defined by a set of van der Waals

radii. As a result, the crevices between van der Waals spheres
that are not accessible to solvent molecules are missing in
the calculation of solute volume, leading to an underestima-
tion of the effective Born radii for deeply buried atoms in
the protein interior. Consequently, the solvation energies of
these atoms are overestimated, and the electrostatic interac-
tion energies between them are underestimated. These effects
become more pronounced for buried charged residues when
salt is present, because Debye-Hu¨ckel screening (eq 2)
impacts the solvation and charge-charge interactions in the
same direction. Consider a buried carboxylate residue that
interacts with a buried cationic residue and a buried anionic
residue. The overestimation of solvation and underestimation
of repulsive interaction lead to a lower pKa, whereas the
underestimation of attractive interaction leads to a higher
pKa. For a buried histidine, a same set of interactions causes
its pKa to shift in the opposite directions.

Simulation Protocol.All REX-CPHMD simulations were
conducted using the PHMD (14, 15) and GBSW modules
(22) within the CHARMM molecular dynamics program
(version c33a1) (23). The replica-exchange protocol was
enabled through the interface package MMTSB tool set
[http://mmtsb.scripps.edu (24); REX-PHMD feature to be
released]. We made use of the CHARMM22 all-atom force
field for proteins (25), including the dihedral cross-term
corrections (CMAP) (16, 26), and the newly optimized GB
input radii set (16).

Simulation details are as follows. The model compound
simulations were conducted with four replicas at 298-550
K. For proteins, 16-24 replicas in the temperature range of
298-450 K were used such that the exchange ratio is∼35-
45%. Each replica was subjected to a constant pH, volume,
and particle MD run. The SHAKE algorithm was applied to
hydrogen bonds to allow a 2 fstime step, and a 22 Å distance
truncation was applied to the nonbonded and GB energy/
force evaluations. A replica-exchange attempt was allowed
every 1000 dynamics steps. The total number of exchange
attempts was 500, resulting in a total simulation time of 1
ns. In the GB calculations, a smoothing length of 0.6 Å at
the dielectric boundary with 24 radial integration points up
to 20 Å and 50 angular integration points were used. The
nonpolar solvation energy was approximated from the
solvent-accessible surface area (SA) calculation using a
phenomenological surface tension coefficient of 0.005 kcal
mol-1 Å-2, derived from hydrocarbon transfer free energy
data (27). Although more rigorous treatments are forthcom-
ing, this surface area-dependent term has been shown to
capture the major nonpolar solvation force in protein folding
simulations (16). In the propagation of titration coordinates,
the temperature was kept the same as the spatial coordinates.
A titration barrier of 2.5 kcal/mol and a tautomer intercon-
version barrier of 2.5 kcal/mol were applied to suppress the
fractional population of mixed titration and tautomeric states
to below 20%.

Model Compound Titrations.Large random error and slow
convergence represent the major bottlenecks in the discrete
and continuous constant pH molecular dynamics simulations
(12). Our previous work pointed out that the conventional
single-temperature 4 ns CPHMD simulations of the blocked
aspartate and histidine residues gave rms deviations in pKa

values ranging from 0.3 to 0.5 unit (15). Table 1 shows that
1 ns REX-CPHMD simulations using four replicas afford
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rms deviations of 0.16 and 0.12 for the pKa’s of blocked
aspartic acid and histidine, respectively. Figure 1 reveals that
REX-CPHMD simulations also result in more rapid conver-
gence in terms of protonation state samplings, which is
readily seen from the smaller fluctuations in unprotonated
fractions along the MD trajectories compared to those in the
single-temperature simulations. Another significant compu-
tational advantage, due to the significant reduction in random
errors and enhancement in convergence, is that the REX
protocol allows us to reduce the total number of titration
simulations in the determination of pKa’s for large proteins.
For all proteins that were investigated in this work, a titration
pH interval of 2 leads to good fits to the generalized
Henderson-Hasselbach curve, which is in sharp contrast to
the previous results using the single-temperature CPHMD
simulations (14, 15).

A set of titration simulations at the pH values equal to
the expected model compound pKa’s was conducted to verify
whether it gives a 50% protonated population (15). The only
exception is the blocked histidine, which yielded a pKa that
is 0.2 pKa unit higher than the expected value of 6.5 (Table
1). Thus, a corresponding correction was made to all the
computed histidine pKa’s shown in the Results. Next, the
pKa’s of model compounds at ionic strengths of 50 and 300
mM were verified using the same set of PMF functions
derived for titrations in pure water. Both ionic strengths
resulted in deviations of approximately-0.2 and 0.1 unit
from the expected pKa’s of the blocked carboxylate and
histidine, respectively.

Structure Preparation.All simulations were based on
either crystal or average solution NMR structures. The PDB

entries are 7RSA for RNase A, 1OMU for OMTKY3, 1CQU
for NTL9, 2CI2 for CI2, 1LSA for HEWL, 1A2P for barnase,
2RN2 for RNase HI, 1BCX for xylanase, 1ERU and 1TRS
for TRX-ox, and 1ERT and 1TRW for TRX-red. The
simulations of TRX-ox and TRX-red in water were per-
formed using the crystal structures 1ERU and 1ERT,
respectively, while those in salt were performed using the
average NMR structures 1TRS and 1TRW, respectively. The
N-terminal and C-terminal residues were kept in their ionized
states and subjected to titration except for the C-terminus of
NTL9, which was blocked with an NH2 group as in the
experiment (28).

RESULTS

RNase A.The predictive power of the CPHMD method
for protein pKa’s depends largely on the underlying solvent
model. Our previous work (15) on bovine pancreatic ribo-
nuclease A (RNase A) indicated that the overall overestima-
tion of depressed pKa’s for carboxylate groups could be
largely attributed to the undersolvation or overstabilization
of solvent-exposed salt bridges, defined here as oppositely
charged pairs of residues that aree4 Å apart in terms of the
minimum distance between the side chain heavy atoms. In
this work, we examine whether the new GB input radii for
the charged and polar side chains can provide a better
description of the strength of charge-charge interactions and
improve the agreement of pKa predictions with experiment.

Table 2 summarizes the computed pKa values for RNase
A from this and our previous work (15) in comparison to
the NMR titration data. We first compare the simulations in
pure water with experimental data obtained under minimal
salt conditions. The rmsd error in this work is 0.7 unit as
compared to 1.3 units in the previous work. Below we will
analyze the factors that contribute to this improvement. The
pKa’s of Glu2, Asp83, Asp121, and CT124 were computed
to be more than 2.3 units lower than experimental values in
the previous work. In particular, that of Asp83, which has a
measured pKa of 3.3, was computed to be-0.9 due to the
overstablized hydrogen bond contacts with Arg85 via NE
and NH2 (Table 3). A comparison with the crystal structure
(PDB entry 7RSA) reveals that the former hydrogen bond
is non-native and the latter represents one of the crystal-
lographic conformations, in which Arg85 is pointed toward
Asp83. The alternative conformation in the crystal structure,
in which Arg85 is rotated away from Asp83, is not sampled.
In this simulation, due to the enhanced solvation of arginine
(the input radius of the amino nitrogen atom is adjusted from
2.13 to 1.7 Å in the new GB parametrization), the rotation
of the Arg85 side chain is more flexible, which allows MD
samplings around both conformations (Table 3). Conse-
quently, the computed pKa for Asp83 is increased by 1.4
units relative to that in the previous work.

One way to assess how close our simulation can reproduce
the strength of oppositely charged side chain-side chain
interactions observed in experiment is to compare the
equilibrium distances from the MD trajectory to the available
structure data. Our previous work revealed that the carboxy-
late residues, which gave overestimated pKa shifts in RNase
A, were closer in distance to the nearby cationic residues
than the crystal structure, and those that formed salt bridges
displayed small positional fluctuations. Table 3 compares

Table 1: REX-CPHMD Simulations of Blocked Aspartic Acid and
Histidinea

run 1 run 2 run 3 run 4 run 5 mean (rmsd)

S(Asp) 0.46 0.46 0.45 0.66 0.40 0.49 (0.09)
pKa 4.1 4.1 4.1 3.7 4.2 4.0 (0.16)
S(His) 0.72 0.65 0.55 0.69 0.72 0.67 (0.06)
pKa 6.6 6.7 6.9 6.7 6.6 6.7 (0.12)

a Unprotonated fractions (S) in five independent 1 ns REX-CPHMD
simulation runs of the blocked aspartic acid at pH 4 and histidine at
pH 7. The pKa’s computed from theS values are also shown.

FIGURE 1: Unprotonated fractions computed from 1 ns windows
in 10 ns MD trajectories for the blocked aspartate (top) and histidine
(bottom) residues. The dashed line represents the single-temperature
CPHMD simulation at 298 K, while the solid line represents the
298 K window in the REX-CPHMD simulation using four replicas
spanning 298-550 K. The error bar on the first data point represents
the rms deviation obtained from five independent simulation runs
(Table 1).
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the distances between ion pairs (Glu2-Lys7, Glu2-Arg10,
Asp83-Arg85, Asp121-Lys66, Asp121-His119, CT124-
Lys104, and CT124-His105) from the previous and current
simulations. In the current simulation, all four carboxylate
residues are farther from the cationic residues and/or exhibit
larger rms distance fluctuations. Also, on the basis of the
crystal structure data, the electrostatic environment of these
carboxylate residues seems to be more realistic as compared
to the previous simulation. As a result, the average error for

these residues is reduced to-1 unit from the previous value
of -2.9 units (Table 2).

The salt effect is an important factor that modulates the
strength of charge-charge interactions in solvent. Here and
throughout the remainder of this paper, we will assess the
extent to which the current approximate treatment for the
Debye-Hückel screening (see Methods) captures the salt
effects on pKa shifts. The inclusion of an ionic strength of
60 mM in the simulation of RNase A reduces the pKa shifts
by more than 1 unit for the carboxylates that exhibit pKa’s
of <3 in pure water simulations. In particular, the most
depressed pKa’s of Glu2, Asp121, and CT124 are brought
closer to the measured values under a similar salt condition
as compared to the results with pure water (Table 2). Because
the Debye-Hu¨ckel screening effects are exponentially de-
pendent on the ionic strength, a further increase in ionic
strength from 60 to 200 mM is expected to have a much
smaller effect than the increase in ionic strength from 0 to
60 mM. This is indeed the case for both the computed and
measured pKa’s for these carboxylate groups.

Let us now consider the computed pKa’s of histidines.
Arg33, Asp14, and His48 form a salt-linked triad, where the
former is partially buried and latter two are completely
buried. In the crystal structure, Asp14 is linked to Arg33
via a salt bridge and His48 via both a side chain-side chain
salt bridge and a hydrogen bond between the backbone
carbonyl oxygen of Asp14 and ND1 of His48. In the
simulation with water, an additional hydrogen bond is formed
between the carboxylate oxygen of Asp14 and the ND1 atom
of His48, which likely leads to the 1 unit underestimation
of the pKa for Asp14. The inclusion of salt brings the
computed value closer to experiment, although at an ionic
strength of 200 mM the correction is too large by 0.8 unit.
In contrast, the computed pKa of His48 in water is 1.8 units
higher than experiment and is not affected by the salt
screening effect.

His12 and His119 are two electrostatically coupled
residues. While His12 is completely buried and interacts with
a helix dipole that favors the charged state, His119 is mostly
exposed and interacts with buried residue Asp121, partially
buried residue Glu111, and solvent-exposed residue Lys7.
The computed pKa of His12 in water shows a positive
deviation of 0.6 unit from experiment. The inclusion of ionic
strengths of 60 and 200 mM further increases the discrepancy
by more than 1 unit, most likely due to the weakened
interaction with His119. The computed pKa of His119 shows
a similar behavior. While in water the overestimation is<1
unit, the inclusion of an ionic strength of 200 mM results in
a positive deviation of 1.8 units. Apparently, the Debye-
Hückel screening changes the aforementioned balance among
several opposing electrostatic interactions. His105 is a
solvent-exposed residue. Its ionization state is modulated by
the balance between the attractive interactions with the
C-terminal carboxylate and the backbone carbonyl of Lys104
and the repulsive interaction with the side chain of Lys104.
The computed pKa is too high by 1.8 units and is not affected
by the inclusion of salt.

OMTKY3.Turkey ovomucoid third domain (OMTKY3)
is a 56-residue serine protease inhibitor that has five
carboxylate residues and one histidine, the protonation states
of which have been determined by NMR in the absence of
the protein target under minimal salt conditions (at∼15 mM

Table 2: Calculated and Experimental pKa Values in RNase Aa

prev REX expt

residue
no
salt

no
salt

60 mM
salt

200 mM
salt

e60 mM
salt

200 mM
salt

Glu2 0.0 2.4 3.5 3.5 2.6 2.8
Glu9 2.6 2.8 3.9 3.9 - 4.0
His12b 5.1 6.6 7.8 7.8 6.0 6.2
Asp14b 3.1 0.8 1.7 2.8 1.8 e2.0
Asp38 1.5 2.2 3.7 4.0 2.1 3.5
His48b 6.3 8.3 8.5 8.5 6.1 6.0
Glu49 5.0 3.7 3.8 3.7 4.3 4.7
Asp53 3.8 3.6 4.9 4.4 3.7 3.9
Asp83 -0.9 2.2 2.9 3.4 3.3 3.5
Glu86 3.9 3.2 4.6 4.4 4.0 4.1
His105 7.3 8.3 8.3 8.5 6.5 6.7
Glu111 3.7 3.3 3.5 3.6 - 3.5
His119 5.7 6.8 6.6 7.9 6.5 6.1
Asp121b 0.4 1.0 2.4 2.1 3.0 3.1
CT124 0.0 1.6 3.4 3.3 2.3 2.4

rmsd 1.7 0.8 1.1 1.2
maximum 4.2 2.2 2.4 2.4

a The prev column refers to the pKa’s obtained from the single-
temperature CPHMD simulation (15) with the GBSW input radii
parametrization by Nina et al. (39). The REX columns refer to the pKa’s
obtained from the REX-CPHMD simulation with the GBSW param-
etrization by Chen et al. (16). The expt columns refer to the pKa’s
determined via NMR titration at a minimal salt concentration (varying
at different pHs but not exceeding 60 mM) by Baker et al. (40) or at
200 mM NaCl by Rico et al. (see ref 38 in ref40). The rmsd and
maximum rows refer to the rms deviation and the maximum absolute
error from the measurements conducted at equal or similar ionic
strengths, respectively. The experimental pKa’s of Glu9 and Glu111 in
60 mM salt are assumed to be the same as those in 200 mM salt.
b Completely or largely buried residues. A residue is defined as buried
if the solvent-accessible surface computed from the crystal or NMR
structure is less than 30 Å2, corresponding to roughly 15-20% of the
maximum solvent-exposed surface area for carboxylate or histidine side
chains.

Table 3: Electrostatic Environment of Carboxylate Residues with
Strongly Depressed pKa Values in RNase Aa

REX prev cryst

Glu2 CD-Lys7 NZ 9.6 (3.4) 6.8 (1.3) 7.3
Glu2 OE2-Arg10 NE 10.9 (6.1) 3.9 (1.6) 2.8
Asp83 OD1-Arg85 NE 5.4 (1.0) 2.9 (0.5) 6.6 (8.8)b

Asp83 OD2-Arg85 NH2 5.1 (1.6) 2.9 (0.2) 3.1 (9.2)b

Asp121 OD1-Lys66 N 3.4 (0.7) 3.8 (1.0) 3.7
Asp121 OD1-His119 NE2 5.2 (1.2) 4.5 (1.7) 2.9
CT124 OT2-Lys104 NZ 5.1 (1.2) 4.3 (0.9) 4.7
CT124 OT1-His105 N 4.4 (2.1) 2.9 (0.3) 5.0
CT124 N-His105 O 3.6 (1.6) 2.8 (0.1) 2.9
CT124 OT1-His105 ND1 4.6 (1.1) - 5.3

a REX and prev columns refer to the average distance and rms
fluctuations (in parentheses) in angstroms of the residue pairs from
this simulation (at pH 3) and previous simulations (15), respectively.
The cryst column refers to the distances in the crystal structure (PDB
entry 7RSA) obtained at pH 5.3.b In parentheses are the distances based
on the second crystallographic conformation in which the Arg85 is
rotated away from Asp83.
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KCl) (29, 30). Table 4 summarizes the computed pKa’s for
OMTKY3 in comparison with our previous work (15) and
experimental data. The rms error is reduced to 0.8 unit in
our new simulation with pure water from 1.1 in the previous
work. Appreciable improvement can be seen for coupled
residues Asp7 and Glu10 as well as for largely buried residue
Asp27, mainly due to the enhanced conformational sampling.
This work predicts the pKa of Asp7 to be 2.5, 1 unit lower
than that of Glu10 (3.5), in better agreement with experiment
(2.7 for Asp and 4.1 for Glu10) than the previous work,
where the predicted pKa of Asp7 was 0.6 unit higher than
that of Glu10. The pKa of Asp27 is nontrivial to predict
because it is largely buried and interacts with both Lys29
and Tyr31 via a charge-charge interaction and a partially
buried hydrogen bond interaction. Our previous work showed
an incomplete convergence in the protonation state sampling
for Asp27 (15) and gave an overestimation of its pKa by 1.7
units, which is reduced to 1 unit in the simulation presented
here. The underestimation of buried hydrogen bond interac-
tion may be responsible for the overestimation of the pKa of
Asp27.

Although the NMR titration experiment was conducted
with a stock solution that contained a salt concentration of
10 mM, the actual ionic strength was slightly higher due to
the adjustment of the pH value via addition of HCl or NaOH
(29). Thus, we decided to repeat the simulation with an ionic
strength of 50 mM. As expected, the pKa’s of Glu19 and
CT56, which are computed to be below 2.5 in simulations
with pure water, are now shifted slightly higher, closer to
the measured values (Table 4). As a result, the rms error is
improved by 0.2 unit. It is, however, worth noting that the
pKa on largely buried Asp27 is shifted farther from the
experimental value, likely because the ion screening amplifies
the oversolvation of buried electrostatic interactions.

NTL9. The 56-residue N-terminal domain of ribosome
protein L9 (NTL9) has six carboxyl residues, all of which
have pKa’s determined by NMR at a salt concentration of
100 mM (28). REX-CPHMD simulations in pure water yield
negative pKa shifts ranging from 1.4 to 3.3 units for the
carboxylate residues, indicating overall very strong attractive
charge-charge interactions (Table 5). The rms deviation from
experiment is 1.7 units. Inclusion of an ionic strength of 100
mM in the simulations results in an increase of all the pKa’s
and a reduction in the rms error to 0.7 unit. It is, however,

worth noting that Asp23 still displays a negative deviation
of 1.4 units from the measured value. A closer examination
of the simulation trajectory and NMR data reveals a possible
cause being the lack of sampling in the energetically less
favorable conformational regions. In our simulation, Asp23
is always pointing toward theR-amino group (Figure 2, left),
whereas two of the total of 18 entries of the NMR ensemble
(PDB entry 1CQU) show an orientation in which Asp23 is
rotated away from theR-amino group through theø1 rotation
(Figure 2, right). Apparently, sampling of this rare confor-
mational state requires a significantly longer simulation time,
since an additional 1 ns simulation does not make any
appreciable difference (Table 5). In fact, the 2 ns simulations
give very similar pKa values with the largest deviation being
0.3 unit for Glu54.

CI2. Barley chymotrypsin inhibitor 2 (CI2), a serine
protease inhibitor from barley seeds, is an 83-residue protein
with 10 carboxylate groups. Our simulation is based on the
crystal structure of the free inhibitor with the first 18 residues
cleaved (31). The pKa’s of CI2 have been experimentally
determined at both minimal, 50 mM, and high ionic strength,
200 mM. We will first consider the simulation in water. A
comparison of the computed pKa’s in water with the
experiment at minimal salt concentration shows a rms
deviation of 0.83 unit (Table 6). The MD trajectory at pH
<3 reveals that Glu26 forms a salt bridge contact with Lys24,
resulting in a negative pKa shift. This interaction is likely
stronger in simulations with pure water than under experi-
mental conditions. The pKa’s for Asp52 and Asp55 are
computed to be the same as the model compound value but
are 1.5 and 1 unit above and below experimental values,
respectively. The MD trajectory at pH 3 reveals that Asp52
interacts with both Asp55 and Lys53, suggesting the require-
ment of more extensive conformational sampling. Indeed,
when the simulation is extended to 2 ns, the two pKa’s start
to split in the directions toward the experimental values,

Table 4: Calculated and Experimental pKa Values in OMTKY3a

prev REX expt

residue no salt no salt 50 mM salt ∼10 mM salt

Asp7 3.2 2.5 3.2 2.7
Glu10 2.6 3.5 3.7 4.1
Glu19 2.6 2.3 3.0 3.2
Asp27b 4.0 3.3 3.7 2.3
Glu43 4.3 4.0 4.3 4.8
His52 - 7.3 7.0 7.5
CT56 1.0 1.1 1.9 2.5

rmsd 1.1 0.8 0.6
maximum 1.7 1.4 1.4

a Experimental pKa’s were determined via NMR titration for the
carboxyl groups at 10 mM KCl by Schaller et al. (29) and for the
N-amino and histidine groups at 15 mM KCl by Forsyth et al. (30).
The rmsd and maximum rows refer to the rms deviation and maximum
absolute error from experiment, respectively.b Buried residue as defined
in Table 2.

Table 5: Computed and Experimental pKa Values in NTL9a

REX expt

residue no salt 100 mM salt 100 mM salt

Asp8 1.4 2.4 (2.3) 3.0
Glu17 1.8 3.7 (3.7) 3.6
Asp23 0.7 1.9 (1.8) 3.1
Glu38 3.1 3.5 (3.4) 4.0
Glu48 3.0 3.9 (4.0) 4.2
Glu54 2.4 3.5 (3.2) 4.2

rmsd 1.7 0.7 (0.8)
maximum 2.4 1.2 (1.3)
a In parentheses are the pKa’s obtained from the 2 ns simulations.

Experimental pKa’s were obtained via NMR titration by Kuhlman et
al. (28).

FIGURE 2: Orientation of Asp23 with respect to theR-amino group
in NTL9. (Left) Predominant conformation in the NMR ensemble
(PDB entry 1CQU), in which the carboxylate of Asp23 is pointing
at theR-amino group. (Right) A less populated conformation in
which the carboxylate of Asp23 is rotated away from theR-amino
group.
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although the magnitude of the splitting still remains too low.
Another factor that may contribute to the discrepancy with
experiment is that these residues display large coordinate
errors in the crytal structure (31).

The titration of Glu14 and Glu15 resembles that of Asp52
and Asp55. In this case, Glu14 electrostatically interacts with
both Glu15 and Lys17. In the first 1 ns simulation, the pKa

of Glu15 is higher than that of Glu14 by 0.3 unit. An
additional 1 ns of conformational sampling further decreases
the pKa of Glu14 and enlarges the difference between the
two to 0.6 unit. It is curious that the order of pKa’s for these
two residues is the opposite of that determined by experi-
ment. In the crystal structure, the carboxylate of Glu14 faces
the amino side chain of Lys17 with the distance between
the CD and NZ atoms being 6.2 Å while Glu15 is rotated
away to solvent with the distance to Lys17 of 8.6 Å. Thus,
the difference between the electrostatic environment of Glu14
and Glu15 as discerned from the crystal structure and MD
trajectory as well as its resemblance to that of Asp52 and
Asp55 leads us to believe that the computed values of 2.8
and 3.4, respectively, are well justified and the experimentally
determined pKa’s of 3.5 and 2.8, respectively, might be
switched due to difficulties in resolving pKa’s from the
biphasic titration data (32).

Inclusion of an ionic strength of 200 mM in the simulation
does not change the pKa’s very much except for those of
Glu4, Glu26, and Asp55, where the latter two are increased
by 0.8 unit to be closer to experimental values. The rms error
at an ionic strength of 200 mM is 0.7 unit, 0.1 unit lower
than that in water.

HEWL.Hen egg white lysozyme (HEWL) is a 129-amino
acid secretory enzyme that catalyzes the hydrolysis of
polysaccharides found in many bacterial cell walls. It has
one histidine and nine carboxylate residues, among which
Glu35 and Asp52 are directly involved in catalysis. Our
computed pKa’s at an ionic strength of 100 mM have a rms
error of 0.7 unit.

Glu35, Asp52, and Arg114 form an interacting triad. The
former two residues are largely buried, whereas the latter is
exposed to solvent. The order of pKa’s for Glu35 and Asp52
reflects the depth of their buried side chains from the surface
of the protein and is well reproduced in simulations in both
pure water and salt solution. Due to the ion screening effect

on their attractive interactions with Arg114, both pKa’s are
increased relative to that in the simulation in pure water.
The same argument can be raised for the salt-induced change
in the pKa’s for the partially buried residues, His15 and
Asp66, where the charged state of His15 is destabilized by
the nearby solvent-exposed residues, Arg14 and Lys96,
whereas that of Asp66 is stabilized by Arg54 and Arg68.

RNase HI. Escherichia coliribonuclease H (RNase HI) is
a 155-residue endonuclease that cleaves the RNA strand of
a RNA-DNA hybrid. It has 20 carboxyl and five histidine
groups. The catalytic site consists of three carboxylate
residues: Asp10, Glu48, and Asp70. The computed pKa’s
with an ionic strength of 100 mM give a rms deviation of
0.9 unit from experiment. Asp10, Asp70, and Asp134 form
a cluster of interacting residues. Our simulation reveals that
Asp10 and Asp70 are completely and partially buried,
respectively, while Asp134 sticks out to solvent and makes
a salt bridge contact with Arg138. The computed pKa’s for
Asp10 and Asp70 are in close agreement with the NMR
titration data, which showed a two-step titration around 6.1
and 2.6. However, the computed pKa of Asp134 is 1.9 units
below experiment, the largest deviation for RNase HI.

His114 is sequestered from solvent and is interacting with
solvent-exposed residue His62. Inclusion of salt increases
the pKa for both, reflecting the screening of their mutual
repulsive interaction. The pKa for His114 is computed to be
too high, most likely due to the desolvation effect being
underestimated. His124 is located on a loop and fluctuates
between a conformation that allows the interaction with the
active site carboxylates of Asp10, Asp70, and Asp134 and
a conformation in which His124 is pointing to solvent. In
the crystal structure (PDB entry 2RN2), which is used as
the starting structure of the current simulation, His124 has a
ø1 angle of 59°, corresponding to the solvent-exposed
conformation. However, in a second crystal structure (PDB
entry 1RNH), His124 has aø1 angle of-89°, corresponding
to the solvent-sequestered conformation, which is the pre-
dominant state observed in the MD trajectory at pH 6. The
negative deviation from the experimental pKa of His124 may
be attributed to the underestimation of the buried salt bridge
interactions with the active site carboxylates, since the
inclusion of salt weakens this interaction and moves the pKa

even lower relative to experiment.
Xylanase.Xylanase fromBacillus circulans is a 185-

residue enzyme that catalyzes the hydrolysis of xylan, a
heteropolysaccharide found in plant cell walls. It has nine
carboxylate and two histidine groups, among which His149
displays one of the lowest known pKa’s for histidines. Our
calculated pKa’s in water have a rms deviation of 0.8 unit
from the NMR data obtained in 25 mM Na3PO4. His149 is
deeply buried with its ND1 atom, accepting a hydrogen bond
from the OG atom of Ser130 and its NE2 atom making
electrostatic contacts with both Asp83 and Asp101, which
causes the interaction with Asp101 to be stronger. Thus, it
is plausible that our simulation shows 85% of titration
occurring on ND1, in full agreement with the hydrogen-
deuterium exchange data, which indicated the protection of
NE2 (33), although the authors did not consider the interac-
tion with the two aspartates. Xylanase undergoes acid-
induced denaturation at pH<2.3 (33). Thus, the underesti-
mation of our computed pKa for His149 is likely larger than
0.6, suggesting again the underestimation of the desolvation

Table 6: Computed and Experimental pKa Values in CI2a

REX expt

residue no salt
50 mM

salt
200 mM

salt
50 mM

salt
200 mM

salt

Glu4 3.5 (3.3) 3.9 4.5 (4.2) 2.9 3.2
Glu7 2.6 (2.3) 2.9 2.8 (2.8) 2.9 3.3
Glu14 3.3 (2.8) 3.3 3.5 (3.5) 3.5 4.2
Glu15 3.6 (3.4) 4.0 3.6 (3.6) 2.8 3.8
Asp23 3.5 (3.6) 3.4 4.1 (4.0) 2.4 -
Glu26 2.5 (2.7) 2.9 3.5 (3.4) 3.7 3.9
Glu41 3.3 (2.9) 3.5 3.5 (3.2) 3.1 3.5
Asp45b 3.3 (2.8) 3.0 3.4 (3.7) 3.6 3.8
Asp52 4.0 (3.5) 3.7 4.1 (4.0) 2.5 2.8
Asp55 4.0 (3.7) 3.9 4.8 (4.6) 5.0 5.0

rmsd 0.8 (0.8) 0.8 0.7 (0.7)
maximum 1.5 (1.2) 1.2 1.3 (1.2)

a Results from the additional 1 ns simulations are listed in paren-
theses. Experimental pKa’s were obtained via NMR by Tan et al. (32).
b Buried residue as defined in Table 2.
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effect. In contrast to His149, His156 is exposed to solvent
and exhibits a very small pKa shift, consistent with experi-
ment. Our simulation reveals that Glu172 is largely buried
and makes electrostatic contact with Arg112. Its computed
pKa shows a positive shift of 0.9 unit, which is 1.4 units
smaller than experiment, due to the underestimation of the
desolvation effect. An accurate prediction of the pKa for
Glu83 is nontrivial, since it is buried and interacts with both
Arg136 and Asp101. The calculated value is 1.2 units too
high relative to experiment. It is interesting that Asp101
displays a pKa shift as large as-3.4 units according to our
simulation, although it does not interact strongly with any
positively charged residue. A closer examination of the MD
trajectory reveals that both carboxylate oxygens are hydrogen
bond acceptors for the OG1 atom and the backbone amide
nitrogen of Thr145.

Barnase.Barnase is a ribonuclease fromBacillus amy-
loliquefaciensthat consists of 108 residues, 13 of which are
carboxylates and two of which are histidines. The inhibition
of barnase by the protein barstar is largely based on the
complementarity to the positive electrostatic potential result-
ing from active site residues Lys27, Arg59, Arg83, Arg87,
and His102, which are in turn stabilized through electrostatic
interactions with Asp54, Glu73, Asp75, and Asp86. The
computed pKa’s in water deviate with a rmsd of 1.0 unit
from experiment. The pKa’s for Asp8, Asp12, Asp22, Glu73,
and Asp86 exhibit negative deviations of greater than 1 unit,
whereas those for Asp75, Asp93, and Asp101 exhibit positive
deviations of greater than 1 unit. Asp8, Asp12, and Arg110
form a solvent-exposed salt triad. Therefore, inclusion of an
ionic strength of 50 mM in the simulation brings the pKa’s
of Asp8 and Asp12 closer to experiment.

Asp22 is a surface residues that makes a salt bridge contact
with the positively charged N-amino group and long-range
electrostatic interactions with Lys17 and Lys47. The former
interaction is a result of an artificial N-terminal group, since
the crystal structure we used is a truncated form (by two
residues) of barnase. Consequently, the computed pKa for
Asp22 is 1.2 units below experiment. Glu60 is another
solvent-exposed residue that interacts with positively charged
Arg57 and Lys60. The computed pKa in water is almost
identical to the measured one, but inclusion of salt increases
the pKa to approximately the model compound value,
resulting in a positive deviation from experiment.

Asp75 is a completely buried residue that makes a buried
salt bridge contact with Arg83 as well as with Arg87. The
calculated pKa in pure water and salt solution is 1 and 2
units above the experimental value, respectively, likely due
to the underestimation of the strength of the buried electro-
static interaction. The same argument is valid for explaining
the positive pKa deviations for partially buried Asp93 and
Asp101, since the former forms partially buried double
hydrogen bonds with the NE and NH2 atoms of Arg69 and
the latter with the OG1 and backbone amide atom of Thr100.

Barnase has two histidines, one of which (His18) is
situated at the end of the N-terminal helix and exhibits a
positive pKa shift larger than 1 unit in experiment, in good
agreement with our calculation. Moreover, since the MD
trajectory reveals that His18 is distant from negatively
charged side chains, its pKa shift must be a result of
stabilization due to the dipole of theR-helix as suggested
by Šali et al. (34).

TRX.Human thioredoxin (TRX) is a 105-residue oxire-
ductase that functions as a general reductant for disulfides
in proteins. It has one histidine and 18 carboxylate groups,
among which Asp26 exhibits one of the largest positive pKa

shifts known for carboxylates. The computed pKa’s show
rms deviations of 1.0 and 1.3 from experimental data for
the reduced and oxidized forms of TRX, respectively. The
pKa of Asp26 is underestimated by 2.6 and 4.5 units for the
reduced and oxidized forms, respectively.

Asp26 is a deeply buried residue. Its positive pKa shift
can be attributed to the destabilization of the charged state
due to three factors, namely, the desolvation effect, buried
repulsive interaction with Glu56, and a buried hydrogen bond
with the OG atom of Ser28. The latter interaction is
represented in the solution NMR structures of TRX (1TRS
and 1TRW), where the side chains of Asp26 and Ser28 are
pointing toward each other in alignment with strandâ3. In
crystal structures 1ERT and 1ERU, however, Ser28 is rotated
away and not hydrogen bonded with Asp26. In our simula-
tion, independent of the starting conformation (crystal or
solution structure), Ser28 rotates away from Asp26 and
makes hydrogen bond contact with Glu56 instead. Thus, it
seems that both the underestimation of desolvation and the
lack of hydrogen bond contact with Ser28 are the main
contributors to the insufficient positive pKa shift for Asp26,
although it is noteworthy that our single-temperature simula-
tion was unable to capture the pKa shift at all (data not
shown). The difference between the experimental pKa’s for
the oxidized and reduced forms is not captured, most likely
because the rearrangement due to the reduction of Cys32
and Cys35 is not sufficiently captured in this simulation.
Nevertheless, our simulation is able to reproduce the large
negative pKa shift on Cys32. While interacting with Asp26,
Glu56 also makes a solvent-exposed salt bridge contact with
Lys39. The latter is the main cause for its depressed pKa,
which is increased when salt is included.

DISCUSSION

By making use of the replica-exchange enhanced sampling
protocol and the improved parametrization of the GBSW
implicit solvent model, this work has addressed two major
issues raised in our previous work (15), namely, large
statistical error and overestimation of pKa shifts for carboxy-
lates that form solvent-exposed salt bridge contacts with
lysine or arginine side chains. Titration simulations of model
compounds demonstrated a more rapid convergence of
protonation states and a reduction of random error from as
large as 0.5 to<0.16 unit with the same amount of total
CPU time (4 ns). In the simulations of OMTKY3 and RNase
A, for which the pKa’s of the carboxylate and histidine groups
have been experimentally measured under minimal salt
conditions (e50 mM), the rms deviation between the
computed values in water and experiment is 0.8 unit, well
below those from our previous work. This improvement is
mainly due to the more realistic electrostatic environment
of carboxylate residues as a result of enhanced self-solvation
of lysine and arginine side chains, which leads to the
weakening of the solvent-exposed interactions with carboxy-
lates.

To further improve the physical realism of CPHMD
simulations and to allow quantitative comparison with
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experimental data obtained in salt solutions, we have taken
into account the salt effects by employing an approximate
Debye-Hückel screening function in the solvation and
protonation energy evaluation. Simulations of OMTKY3,
CI2, and xylanase showed that the effect due to the presence
of an ionic strength of 50 mM (minimal salt condition) is
negligible, whereas the simulations of NTL9, HEWL, RNase
HI, and TRX demonstrated that the ion screening effect due
to an ionic strength of 100 mM is significant and can result
in a difference in the rms deviation of as large as 1 unit.
Since the Debye-Hu¨ckel screening effect is exponentially
dependent on the charge-charge distance (e-κr), the salt effect
on pKa is expected to be the largest for carboxylates that
form tightly bound solvent-exposed salt bridges. Thus, the
most depressed carboxylate pKa’s in NTL9, HEWL, RNase
HI, TRX, and RNase A are elevated and brought closer to
the measured values. Inclusion of salt, however, does not
improve the agreement of the pKa with experiment for buried
residues, as discussed later. Thus, the rms errors for barnase
and RNase A obtained from the simulations with salt are
equal or slightly larger than those in water.

The high accuracy and robustness of REX-CPHMD
simulations for the first-principles determination of protein
pKa’s have been demonstrated through a comparison of
theoretical and experimental titration studies of 10 proteins,
ranging from 56 to 185 amino acid residues in size. These
proteins all exhibit anomalously large pKa shifts. Our titrating
groups are comprised of 119 carboxylate, 15 histidines, and
one cysteine, among which His149 of xylanase and Asp26
of TRX display the largest pKa shifts known to date. The
titration of lysine, arginine, and tyrosine is left out because
they titrate at a much higher pH (>10) and generally give
very small pKa shifts (10). Thus, the titrating residues we
chose provide one of the most stringent test sets for
theoretical pKa prediction methods. In Table 8, we summarize
the rms deviations between the calculated and experimental
pKa’s according to the residue and solvent exposure types.
For a total of 135 titrating groups, the rms error relative to
measurement is 1 unit, or 0.8 unit for the solvent-exposed
residues and 1.5 units for the largely or completely buried
residues. These results are comparable to those of the PB-
based methods that use an empirically adjusted protein
dielectric constant (8) and/or are combined with multiple
protein conformations (9, 10), and the method based on
empirically screened Coulomb potential (35), as well as the
fully empirical structure-based prediction approach (7). It
is, however, important to stress the fundamental difference
between the CPHMD method and the structure-based
macroscopic methods. Namely, the CPHMD method, in
principle, does not require a high-resolution structure for the
determination of the side chain ionization equilibria.

Larger rms errors for the pKa’s of buried residues and
detailed analysis of their electrostatic environment have
indicated a problem due to underestimation of the desolvation
and buried charge-charge interactions, which is a known
deficiency in the underlying implicit solvent model that
employs van der Waals surface as the dielectric boundary.
The error due to underestimation of desolvation energy
increases with the depth of the burial. Thus, the largest
computational error is for Asp26 from human thioredoxin,
where the positive pKa shift is underestimated by 2.6 and
4.5 units for the oxidized and reduced forms, respectively.

Theoretical prediction of the pKa for a buried side chain that
forms a strong electrostatic interaction with another buried
charged residue is nontrivial because it requires the desol-

Table 7: Calculated and Experimental pKa Values in HEWL, RNase
HI, Barnase, Xylanase, and Thioredoxina

residue salt water expt residue salt water expt

HEWL barnase
Glu7 3.2 2.2 2.9 Asp8 2.9 1.5 2.9
His15b 6.2 4.7 5.7 Asp12 3.0 2.0 3.8
Asp18 3.3 2.3 2.7 His18 7.9 7.9 7.9
Glu35b 5.5 4.9 6.2 Asp22 2.1 1.6 3.3
Asp48 3.5 2.6 2.5 Glu29 4.3 4.2 3.8
Asp52b 4.7 4.0 3.7 Asp44 3.8 3.4 3.4
Asp66 1.9 1.1 2.0 Asp54 2.4 2.0 2.2
Asp87 2.7 0.8 2.1 Glu60 4.2 3.3 3.4
Asp101 4.0 1.2 4.1 Glu73 2.1 1.0e2.1
Asp119 2.5 3.3 3.2 Asp75b 5.4 4.1 3.1
CT129 2.7 2.0 2.7 Asp86 3.5 2.8 4.2
rmsd 0.6 1.2 Asp93b 4.3 3.3 <2.0
maximum 1.0 2.9 Asp101b 4.1 3.4 e2.2

His102 6.8 6.2 6.3
RNase HI rmsd 1.1 1.0

Glu6 3.8 2.4 4.5 maximum 2.3 1.8
Asp10b 5.7 4.8 6.1 TRX-ox
Glu32 3.5 3.0 3.6 Glu6 4.0 4.0 4.9
Glu48b 3.5 2.1 4.4 Glu13 3.8 3.7 4.4
Glu57 3.3 3.1 3.2 Asp16 3.6 2.7 4.2
Glu61 3.3 0.8 3.9 Asp20 3.4 1.2 3.8
His62 6.1 5.6 7.0 Asp26b 5.6 5.5 8.1
Glu64 3.4 2.2 4.4 Cys32b - - -
Asp70 2.3 2.6 2.6 Glu47 3.7 2.8 4.3
His83 6.2 5.4 5.5 Glu56 2.7 0.2 3.3
Asp94 2.9 2.0 3.2 Asp58b 5.3 5.7 5.2
Asp102 3.1 1.9 <2.0 Asp60 4.3 5.4 2.7
Asp108 2.4 -1.0 3.2 Asp61 4.5 3.3 3.9
His114b 6.0 4.9 <5.0 Asp64 3.0 1.9 3.2
Glu119 3.4 1.8 4.1 Glu68 3.8 3.5 5.1
His124 5.0 5.9 7.1 Glu70 4.3 3.4 4.8
His127 6.8 7.1 7.9 Glu88 3.8 3.3 3.6
Glu129b 4.6 3.1 3.6 Glu95 3.5 3.1 4.1
Glu131 4.0 3.4 4.3 Glu98 3.9 2.9 3.9
Asp134 2.2 0.5 4.1 Glu103 4.0 4.0 4.5
Glu135 3.6 3.2 4.3 rmsd 1.0 1.6
Glu147 4.1 3.8 4.2 maximum 2.5 2.6
Asp148 3.1 2.9 <2.0 TRX-red
Glu154 4.0 3.0 4.4 Glu6 4.5 3.9 4.8
CT155 3.1 1.5 3.4 Glu13 4.2 4.1 4.4
rmsd 0.9 2.3 Asp16 3.2 3.0 4.0
maximum 1.9 4.2 Asp20 3.5 0.9 3.8

xylanase Asp26b 5.7 5.4 9.9
Asp4 3.2 3.0 Cys32b 6.9 - 6.3
Asp11 2.4 2.5 Glu47 3.8 2.7 4.1
Glu78b 4.5 4.6 Glu56 2.3 1.0 3.3
Asp83b 3.2 <2.0 Asp58b 5.5 5.0 5.3
Asp101 0.6 <2.0 Asp60 4.9 5.3 2.8
Asp106b 3.7 2.7 Asp61 4.1 3.7 4.2
Asp119 3.6 3.2 Asp64 2.7 1.9 3.2
Asp121 3.3 3.6 Glu68 3.6 3.4 4.9
His149b 2.7 <2.3 Glu70 3.9 3.9 4.6
His156 7.2 6.5 Glu88 3.5 2.9 3.7
Glu172b 5.3 6.7 Glu95 3.8 3.5 4.1
CT185 2.5 2.7 Glu98 3.6 3.1 3.9
rmsd 0.8 Glu103 4.1 3.7 4.4
maximum 1.4 rmsd 1.3 1.7

maximum 4.2 4.5
a Computed pKa’s under the experimental salt conditions are listed

adjacent to those obtained in pure water. Experimental pKa values were
obtained at room temperature under the following salt conditions:
HEWL at 100 mM NaCl (41, 42), barnase at 50 mM KCl (37) for the
carboxylate groups and in water for the histidines (34), RNase HI at
100 mM NaCl for the carboxylate groups (43) or in water for histidines
(44), xylanase at 25 mM Na3PO4 (33, 45), and thioredoxin at 100 mM
Na3PO4 (46). b Buried residues as defined in Table 2.
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vation effect, attractive and/or repulsive charge-charge
interactions, to be accurately captured at the same time.
Inclusion of ionic strength via the approximate Debye-Hu¨ckel
screening function tends to move the computed pKa farther
from the measured value in the presence of buried charge-
charge or hydrogen bond interactions. This is likely the
reason for the increased overestimation of pKa’s for Asp27
in OMTKY3 and residues Asp75, Asp93, and Asp101 in
barnase.

Methods that explicitly sample the protonation states of
protein ionizable side chains have been plagued with
convergence problems (12). The work presented here has
demonstrated that sufficient convergence of the protonation
states can be achieved within a computationally tractable time
by enhancing sampling of conformational degrees of free-
dom. As shown in the model compound simulations as well
as for NTL9 and CI2, increasing CPU time beyond 1 ns per
replica does not noticeably shift the protonation state
populations. This is consistent with the recent success in the
application of short-time REX-GB simulations for NMR
structure refinement (36). Extensive protonation and con-
formational state sampling are particularly critical in the
prediction of pKa’s for the buried or coupled titrating residues
because in the former case conformational rearrangement is
slow while in the latter case fluctuation in the protonation
state population is large. Through the use of the enhanced
conformational sampling protocol, improved agreement with
experimental pKa is seen for the buried residues, Asp27 of
OMTKY3 and Asp26 of TRX. The enhanced sampling
protocol has also allowed the experimental pKa’s of coupled
titrating residues to be reproduced to a reasonable degree,
such as Asp7 and Glu10 of OMTKY3, Asp52 and Asp55 of
CI2, and Asp54, Asp75, and Asp86 of barnase, although the
splitting between the two pKa’s seems to be underestimated.

As the accuracy of theoretical pKa predictions approaches
that of experimental measurements, small deviations in pKa

values can be dominated by the difference in solvent and
protein conditions, measurement errors, and the differences
in model compounds representing the standard pKa’s. For
example, the reported ionic strength used in the titration
experiments is often based on that of the stock solution. The
actual ionic strength varies slightly due to the addition of
HCl or NaOH for the adjustment of pH value. This is the
case in the determination of pKa’s for OMTKY3 (29).
Accurate measurement of pKa’s from NMR titrations relies
upon the observation of chemical shifts for both protonated
and deprotonated states. Consequently, the pKa of a residue
that is not fully titrated at a low pH where the protein unfolds
cannot be accurately determined due to the lack of baseline

representing the fully protonated state, as is the case for
Glu73, Asp93, and Asp101 in barnase (37). Experimental
determination of pKa’s for coupled ionizable residues is
difficult. Fitting of ideal titration curves to the NMR chemical
shift data of these residues leads to poorly resolved pKa’s,
as seen for Asp54, Asp75, and Asp86 in barnase (37) or
Glu14 and Glu15 in CI2 (32). Finally and perhaps most
importantly, theoretical pKa’s are computed relative to the
standard pKa’s, which are taken from a limited number of
titration measurements on the derivatives of single amino
acids or small peptides (3). The reported values of these
standard pKa’s vary depending on the environment surround-
ing the specific side chain in the model compound or peptide
(3). On the other hand, calculation of the standard pKa in
the simulation is based on a blocked single amino acid.
Although we estimate the error of this type to be within 0.2
unit of the carboxyl and histidine side chains, it is much
larger for rare groups such as the thiol group of cysteine,
which has a measured standard pKa ranging from 8.4 to 9.1
(3, 21, 38). Thus, some variation in measured and calculated
pKa values will result from differing reference compounds
used in the experimental analysis. Better agreement between
experiment and theory may be achieved by using the same
model compound or peptide in the simulation. This is,
however, often not practical due to the lack of force field
parameters representing the compound or peptide used in
the experiment.

This work has shown that the experimental pKa’s of
proteins can be reliably reproduced by first-principles REX-
CPHMD simulations. The rms error is∼0.6 unit for proteins
containing none or very few buried ionizable side chains,
such as OMTKY3, NTL9, CI2, and HEWL,∼0.8 unit for
proteins containing a few buried groups, such as RNase A,
RNase HI, and xylanase, and 1.0 unit or slightly higher for
proteins containing ionizable side chains deeply buried in
the core and experiencing strong charge-charge interactions.
When the aforementioned discrepancy between the experi-
mental and simulation conditions is taken into account, this
level of agreement suggests that the REX-CPHMD method
is maturing into a practical tool, which can be applied in
exploring a wide variety of pH-dependent conformational
phenomena in biological macromolecules, such as protein
folding and misfolding, aggregation, ligand binding, mem-
brane insertion, and catalysis.
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